Author(s):

  • Kersten-van Dijk, Elisabeth T.
  • Westerink, Joyce H.D.M.
  • Beute, Femke
  • IJsselsteijn, Wijnand A.

Abstract:

Personal informatics (PI) systems allow users to collect and review personally relevant information. The purpose commonly envisioned for these systems is that they provide users with actionable, data-driven self-insight to help them change their behavioral patterns for the better. Here, we review relevant theory as well as empirical evidence for this self-improvement hypothesis. From a corpus of 6,568, only 24 studies met the selection criteria of being a peer-reviewed empirical study reporting on actionable, data-driven insights from PI data, using a “clean” PI system with no other intervention techniques (e.g., additional coaching) on a nonclinical population. First results are promising—many of the selected articles report users gaining actionable insights—but we do note a number of methodological issues that make these results difficult to interpret. We conclude that more work is needed to investigate the self-improvement hypothesis and provide a set of recommendations for future work.

Document:

https://www.tandfonline.com/doi/full/10.1080/07370024.2016.1276456

References:
  1. Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl & J. Beckmann (Eds.), Action control (pp. 11–39). Berlin, Germany: Springer. [Crossref][Google Scholar]
  2. Bagozzi, R. P. (2000). The poverty of economic explanations of consumption and an action theory alternative. Managerial and Decision Economics, 21, 95–109. doi:10.1002/mde.975 [Crossref][Google Scholar]
  3. Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215. doi:10.1037/0033-295X.84.2.191 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  4. Bandura, A. (1991). Social cognitive theory of self-regulation. Organizational Behavior and Human Decision Processes, 50, 248–287. doi:10.1016/0749-5978(91)90022-L [Crossref], [Web of Science ®][Google Scholar]
  5. Buchanan, K., Russo, R., & Anderson, B. (2014). Feeding back about eco–feedback: How do consumers use and respond to energy monitors? Energy Policy, 73, 138–146. doi:10.1016/j.enpol.2014.05.008 [Crossref], [Web of Science ®][Google Scholar]
  6. Burke, L. E., Wang, J., & Sevick, M. A. (2011). Self-monitoring in weight loss: A systematic review of the literature. Journal of the American Dietetic Association, 111, 92–102. doi:10.1016/j.jada.2010.10.008 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  7. Campbell, M., Fitzpatrick, R., Haines, A., Kinmonth, A. L., Sandercock, P., Spiegelhalter, D., & Tyrer, P. (2000). Framework for design and evaluation of complex interventions to improve health. British Medical Journal, 321(7262), 694–696. doi:10.1136/bmj.321.7262.694 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  8. Card, S. K., Mackinlay, J. D., & Shneiderman, B. (Eds.). (1999). Readings in information visualization: Using vision to think. San Francisco, CA: Morgan Kaufmann. [Google Scholar]
  9. Chang, R., Ziemkiewicz, C., Green, T., & Ribarsky, W. (2009). Defining in–sight for visual analytics. IEEE Computer Graphics and Applications, 29(2), 14–17. doi:10.1109/MCG.2009.22 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  10. Choe, E. K., Lee, B., Kay, M., Pratt, W., & Kientz, J. A. (2015). Sleeptight: Low-burden, self-monitoring technology for capturing and reflecting on sleep behaviors. Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  11. Choe, E. K., Lee, B., & Schraefel, M. C. (2015, July). Characterizing visualization insights from quantified selfers’ personal data presentations. IEEE Computer Graphics and Applications, 35(4), 28–37. doi:10.1109/MCG.2015.51 [Crossref], [Web of Science ®][Google Scholar]
  12. Choe, E. K., Lee, N. B., Lee, B., Pratt, W., & Kientz, J. A. (2014). Understanding quantified-selfers’ practices in collecting and exploring personal data. Proceedings of the CHI 2014 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  13. Collins, E. I. M., Cox, A. L., Bird, J., & Cornish-Tresstail, C. (2014). Barriers to engagement with a personal informatics productivity tool. Proceedings of the OzCHI 2014 Australian Computer–Human Interaction Conference on Designing Futures. New York, NY: ACM. [Google Scholar]
  14. Collins, E. I. M., Cox, A. L., Bird, J., & Harrison, D. (2014). Social network–ing use and rescuetime: The issue of engagement. Proceedings of the UbiComp 2014 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  15. Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich, J., LeGrand, L., … Landay, J. A. (2008). Flowers or a robot army?: En- couraging awareness & activity with personal, mobile displays. Proceedings of the UbiComp 2008 International Conference on Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  16. Cuttone, A., & Larsen, J. E. (2014). The long tail issue in large scale deployment of personal informatics. Proceedings of the UbiComp 2014 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  17. Cuttone, A., Lehmann, S., & Larsen, J. E. (2013). A mobile personal informatics system with interactive visualizations of mobility and social interactions. Proceedings of the PDM 2013 International Workshop on Personal Data Meets Distributed Multimedia. New York, NY: ACM. [Google Scholar]
  18. De Maeyer, C., & Jacobs, A. (2013). Sleeping with technology–designing for personal health. In Shikakeology: Designing triggers for behavior change: Papers from the 2013 AAAI Spring Symposium (pp. 11–16). Retrieved from http://www.aaai.org/ocs/index.php/SSS/SSS13/paper/view/5726 [Google Scholar]
  19. De Vries, H., Mudde, A., Leijs, I., Charlton, A., Vartiainen, E., Buijs, G., … Kremers, S. (2003). The European Smoking Prevention Framework Approach (EFSA): An example of integral prevention. Health Education Research, 18, 611–626. doi:10.1093/her/cyg031 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  20. Doumit, R., Long, J., Kazandjian, C., Gharibeh, N., Karam, L., Song, H., … Zeeni, N. (2015). Effects of recording food intake using cell phone cam- era pictures on energy intake and food choice. Worldviews on Evidence-Based Nursing, 13, 3. doi:10.1111/wvn.12123 [Crossref], [Web of Science ®][Google Scholar]
  21. Elsden, C., & Kirk, D. S. (2014). A quantified past: Remembering with personal informatics. Proceedings of the DIS 2014 Companion Publication on Designing Interactive Systems. New York, NY: ACM. [Google Scholar]
  22. Epstein, D. A., Cordeiro, F., Bales, E., Fogarty, J., & Munson, S. (2014). Taming data complexity in lifelogs: Exploring visual cuts of personal informatics data. In Proceedings of the DIS 2014 Conference on Designing Interactive Systems. New York, NY: ACM. [Google Scholar]
  23. Epstein, D. A., Ping, A., Fogarty, J., & Munson, S. A. (2015). A lived informatics model of personal informatics. Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  24. Fishbein, M. (2000). The role of theory in HIV prevention. AIDS Care, 12, 273–278. doi:10.1080/09540120050042918 [Taylor & Francis Online], [Web of Science ®][Google Scholar]
  25. Fox, S., & Duggan, M. (2013, January 28). Tracking for health. Available from http://www.pewinternet.org/2013/01/28/tracking-for-health/ [Google Scholar]
  26. Fritz, T., Huang, E. M., Murphy, G. C., & Zimmermann, T. (2014). Persuasive technology in the real world: A study of long-term use of activity sensing devices for fitness. Proceedings of the CHI 2014 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  27. Froehlich, J., Findlater, L., & Landay, J. (2010). The design of eco-feedback technology. Proceedings of the CHI 2010 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  28. Fujinami, K. (2010). A case study on information presentation to increase awareness of walking exercise in everyday life. International Journal of Smart Home, 4(4), 11–26. doi:10.1007/978-3-540-68504-328 [Crossref][Google Scholar]
  29. Gouveia, R., Karapanos, E., & Hassenzahl, M. (2015). How do we engage with activity trackers?: A longitudinal study of Habito. Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  30. Hagger, M. S., & Chatzisarantis, N. L. (2014). An integrated behavior change model for physical activity. Exercise and Sport Sciences Reviews, 42(2), 62–69. doi:10.1249/JES.0000000000000008 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  31. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112. doi:10.3102/003465430298487 [Crossref], [Web of Science ®][Google Scholar]
  32. Hermsen, S., Frost, J., Renes, R. J., & Kerkhof, P. (2016). Using feedback through digital technology to disrupt and change habitual behavior: A critical review of current literature. Computers in Human Behavior, 57(100), 61–74. doi:10.1016/j.chb.2015.12.023 [Crossref], [Web of Science ®][Google Scholar]
  33. Hori, Y., Tokuda, Y., Miura, T., Hiyama, A., & Hirose, M. (2013). Communication pedometer: A discussion of gamified communication focused on frequency of smiles. Proceedings of the 2013 Augmented Human International Conference. New York, NY: ACM. [Google Scholar]
  34. Huang, D., Tory, M., Aseniero, B. A., Bartram, L., Bateman, S., Carpendale, S., … Woodbury, R. (2015). Personal visualization and personal visual analytics. IEEE Transactions on Visualization and Computer Graphics, 21, 420–433. doi:10.1109/TVCG.2014.2359887 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  35. Kay, M., Choe, E. K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., & Kientz, J. A. (2012). Lullaby: A capture & access system for understanding the sleep environment. Proceedings of the UbiComp 2012 Conference on Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  36. Khovanskaya, V., Baumer, E. P., Cosley, D., Voida, S., & Gay, G. (2013). “every–body knows what you’re doing”: A critical design approach to personal informatics. Proceedings of the CHI 2013 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  37. Klasnja, P., Consolvo, S., & Pratt, W. (2011). How to evaluate technologies for health behavior change in hci research. Proceedings of the CHI 2011 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  38. Klayman, J. (1995). Varieties of confirmation bias. In J. Busemeyer, R. Hastie, & D. L. Medin (Eds.), Decision making from a cognitive perspective: Advances in research and theory (Vol. 32, pp. 385–418). New York, NY: Academic Press. [Crossref][Google Scholar]
  39. Klein, M., Mogles, N., & Van Wissen, A. (2011). Why won’t you do what’s good for you? using intelligent support for behavior change. In A. Salah & B. Lepri (Eds.), Human behavior understanding (Vol. 7065, pp. 104–115). Berlin, Germany: Springer. [Crossref][Google Scholar]
  40. Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119, 254–284. doi:10.1037/0033-2909.119.2.254 [Crossref], [Web of Science ®][Google Scholar]
  41. Kluger, A. N., & DeNisi, A. (1998). Feedback interventions: Toward the under–standing of a double-edged sword. Current Directions in Psychological Science, 7(3), 67–72. doi:10.1111/1467-8721.ep10772989 [Crossref], [Web of Science ®][Google Scholar]
  42. Li, I., Dey, A., & Forlizzi, J. (2010). A stage-based model of personal informat- ics systems. Proceedings of the CHI 2010 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
  43. Li, I., Dey, A. K., & Forlizzi, J. (2011). Understanding my data, myself: Sup–porting self-reflection with ubicomp technologies. Proceedings of the International Conference on Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
  44. Maes, S., & Gebhardt, W. (2000). Self-regulation and health behavior: The health behavior goal model. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 343–368). New York, NY: Academic Press. [Crossref][Google Scholar]
  45. McGuire, W. J. (1968). Personality and attitude change: An information- processing theory. In A. G. Greenwald, T. C. Brock, & T. M. Ostrom (Eds.), Psychological foundations of attitudes (pp. 171–196). New York, NY: Academic Press. [Crossref][Google Scholar]
  46. North, C. (2006, May). Toward measuring visualization insight. IEEE Computer Graphics and Applications, 26(3), 6–9. doi:10.1109/MCG.2006.70 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  47. Park, S., Pedro, J. S., & Oliver, N. (2015). Mobitop: Bringing topic-based re– flection to mobile browsing habits. Proceedings of the 2015 International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 International Symposium on Wearable Computers. New York, NY: ACM. [Google Scholar]
  48. Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In Communication and persuasion (pp. 1–24). New York, NY: Springer. doi:10.1007/978-1-4612-4964-11 [Crossref][Google Scholar]
  49. Prochaska, J. O., & Velicer, W. F. (1997). The transtheoretical model of health behavior change. American Journal of Health Promotion, 12, 38–48. doi:10.4278/0890-1171-12.1.38 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  50. Quantified Self Labs. (2015, December). Quantified self — self knowledge through numbers. Retrieved from http://www.quantifiedself.com [Google Scholar]
  51. Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change. The Journal of Psychology, 91, 93–114. doi:10.1080/00223980.1975.9915803 [Taylor & Francis Online], [Web of Science ®][Google Scholar]
  52. Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. C. (2014). Personal tracking as lived informatics. Proceedings of the CHI 2014 Conference on Human Factors in Computing Systems. New York, NY: ACM. [Google Scholar]
  53. Rosenstock, I. M. (1974). Historical origins of the health belief model. Health Education & Behavior, 2, 328–335. doi:10.1177/109019817400200403 [Crossref], [Web of Science ®][Google Scholar]
  54. Ryan, P. (2009). Integrated theory of health behavior change: Background and intervention development. Clinical Nurse Specialist, 23, 161–172. doi:10.1097/NUR.0b013e3181a42373 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  55. Schwarzer, R. (2008). Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Applied Psychology: An International Review, 57, 1–29. doi:10.1111/j.1464-0597.2007.00325.x [Crossref], [Web of Science ®][Google Scholar]
  56. Sheeran, P. (2002). Intention-behavior relations: A conceptual and empirical review. European Review of Social Psychology, 12, 1–36. doi:10.1080/14792772143000003 [Taylor & Francis Online][Google Scholar]
  57. Snyder, J., Matthews, M., Chien, J., Chang, P. F., Sun, E., Abdullah, S., & Gay, G. (2015). Moodlight: Exploring personal and social implications of ambient display of biosensor data. Proceedings of the CHI 2015 Conference on Computer Supported Cooperative Work & Social Computing. New York, NY: ACM. [Google Scholar]
  58. Verdezoto, N., & Grönvall, E. (2015). On preventive blood pressure self-monitoring at home. Cognition, Technology & Work, 18, 267–285. doi:10.1007/s10111-015-0358-7 [Crossref], [Web of Science ®][Google Scholar]
  59. Wac, K. (2014). Beat-by-beat getting fit: Leveraging pervasive self-tracking of heart rate in self-management of health. In Big data becomes personal: Knowledge into meaning: Papers from the AAAI spring symposium (pp. 102–103). Palo Alto, CA: The AAAI Press. [Google Scholar]
  60. Whooley, M., Ploderer, B., & Gray, K. (2014). On the integration of self-tracking data amongst quantified self members. Proceedings of the BCS 2014 Human Computer Interaction Conference on HCI. Southport,UK: BCS. [Google Scholar]
  61. Witte, K. (1992). Putting the fear back into fear appeals: The extended paral–lel process model. Communication Monographs, 59, 329–349. doi:10.1080/03637759209376276 [Taylor & Francis Online], [Web of Science ®][Google Scholar]