Author(s):
- Eun Kyoung Choe
- Bongshin Lee
- Matthew Kay
- Wanda Pratt
- Julie A. Kientz
Abstract:
Manual tracking of health behaviors affords many benefits, including increased awareness and engagement. However, the capture burden makes long-term manual tracking challenging. In this study on sleep tracking, we examine ways to reduce the capture burden of manual tracking while leveraging its benefits. We report on the design and evaluation of SleepTight, a low-burden, self-monitoring tool that leverages the Android’s widgets both to reduce the capture burden and to improve access to information. Through a four-week deployment study (N = 22), we found that participants who used SleepTight with the widgets enabled had a higher sleep diary compliance rate (92%) than participants who used SleepTight without the widgets (73%). In addition, the widgets improved information access and encouraged self-reflection. We discuss how to leverage widgets to help people collect more data and improve access to information, and more broadly, how to design successful manual self-monitoring tools that support self-reflection.
Documentation:
https://doi.org/10.1145/2750858.2804266
References:
- Aura. http://www.withings.com/us/withings-aura.html.
- Bauer, J. S., Consolvo, S., Greenstein, B., Schooler, J., Wu, E., Watson, N. F., & Kientz, J. A. (2012). ShutEye: encouraging awareness of healthy sleep recommendations with a mobile, peripheral display. CHI ’12.
- Bentley, F. & Tollmar, K. (2013). The power of mobile notifications to increase wellbeing logging behavior. CHI ’13, 1095–1098.
- Bentley, F., Tollmar, K., Stephenson, P., Levy, L., Jones, B., Robertson, S., Price, E., Catrambone, R., & Wilson, J. (2013). Health Mashups. ACM Transactions on Computer-Human Interaction (TOCHI), 20(5), 1–27.
- Brown, G. D., & Chater, N. (2001). The chronological organization of memory: Common psychological foundations for remembering and timing. Time and memory: Issues in philosophy and psychology, 77–110.
- Carney C. E., Buysse D. J., Ancoli-Israel S., Edinger J. D., Krystal A. D., Lichstein K. L., & Morin C. M. (2012). The consensus sleep diary: standardizing prospective sleep self-monitoring. Sleep, 35(2), 287–302.
- Chen, Z., Lin, M., Chen, F., Lane, N. D., Cardone, G., Wang, R., Li, T., Chen, Y., Choudhury, T., & Campbell, A. T. (2013). Unobtrusive sleep monitoring using smartphones. PervasiveHealth ’13. 145–152.
- Choe, E. K., Consolvo, S., Watson, N. F., & Kientz, J. A. (2011). Opportunities for computing technologies to support healthy sleep behaviors. CHI ’11, 3053–3062.
- Choe, E. K., Lee, N. B., Lee, B., Pratt, W., & Kientz, J. A. (2014). Understanding Quantified-Selfers’ practices in collecting and exploring personal data. CHI ’14, 1143–1152.
- Choe, E. K., Lee, B., & schraefel, m.c. (2015). Characterizing visualization insights from Quantified-Selfers’ personal data presentations. IEEE Computer Graphics and Applications, 35(4), 28–37.
- Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich, J., LeGrand, L., Libby, R., Mosher, K., & Landay, J. A. (2008). Flowers or a robot army?: encouraging awareness & activity with personal, mobile displays. Ubicomp ’08.
- Fitbit. http://www.fitbit.com.
- Flurry. http://www.flurry.com/blog/flurry-insights/health-and-fitness-apps-finally-take-fueled-fitness-fanatics#.VADBjmSwKVt.
- Hernandez, J., Paredes, P., Roseway, A., & Czerwinski, M. (2014). Under pressure: sensing stress of computer users. CHI ’14, 51–60.
- Inside Wearables. http://endeavourpartners.net/assets/Wearables-and-the-Science-of-Human-Behavior-Change-EP4.pdf.
- Kanfer, F. H. & Gaelick-Buys, L. (1991). Self-management methods. Pergamon Press.
- Kay, M., Choe, E. K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., & Kientz, J. A. (2012). Lullaby: a capture & access system for understanding the sleep environment. UbiComp ’12, 226–234.
- Kazdin, A. E. (1974). Reactive self-monitoring: the effects of response desirability, goal setting, and feedback. J Consult Clin Psych, 42(5), 704–716.
- Kim, S., Kientz, J. A., Patel, S. N., & Abowd, G. D. (2008). Are you sleeping?: sharing portrayed sleeping status within a social network. CSCW ’08, 619–628.
- Kong, A., Beresford, S. A., Alfano, C. M., Foster-Schubert, K. E., Neuhouser, M. L., Johnson, D. B., Duggan, C., Wang, C. Y., Xiao, L., Jeffery, R. W., Bain, C. E., & McTiernan, A. (2012). Self-monitoring and eating-related behaviors are associated with 12-month weight loss in postmenopausal overweight-to-obese women. Journal of the Academy of Nutrition and Dietetics, 112(9), 1428–1435.
- Kong, F. & Tan, J. (2012). DietCam: Automatic dietary assessment with mobile camera phones. Pervasive and Mobile Computing, 8(1), 147–163.
- Korotitsch, W. J. & Nelson-Gray, R. O. (1999). An overview of self-monitoring research in assessment and treatment. Psychological Assessment, 11(4), 415.
- Lawson, S., Jamison-Powell, S., Garbett, A., Linehan, C., Kucharczyk, E., Verbaan, S., Rowland, D. A., & Morgan, K. (2013). Validating a mobile phone application for the everyday, unobtrusive, objective measurement of sleep. CHI ’13, 2497–2506.
- Li, I., Dey, A. K., & Forlizzi, J. (2012). Using context to reveal factors that affect physical activity. ACM Transactions on Computer-Human Interaction (TOCHI), 19(1), 7.
- Mattila, E., Parkka, J., Hermersdorf, M., Kaasinen, J., Vainio, J., Samposalo, K., Merilahti, J., Kolari, J., Kulju, M., Lappalainen, R., & Korhonen, I. (2008). Mobile diary for wellness management—results on usage and usability in two user studies. Information Technology in Biomedicine, 12(4), 501–512.
- Min, J. K., Doryab, A., Wiese, J., Amini, S., & Zimmerman, J. (2014). Toss ‘N’ Turn: smartphone as sleep and sleep quality detector. CHI ’14, 477–486.
- Morris, D., Saponas, T. S., Guillory, A., & Kelner, I. (2014). RecoFit: using a wearable sensor to find, recognize, and count repetitive exercises. CHI ’14, 3225–3234.
- Moves. https://www.moves-app.com.
- Nelson, R. O. & Hayes, S. C. (1981). Theoretical explanations for reactivity in self-monitoring. Behavior Modification, 5(1), 3–14.
- Oliver, N. & Flores-Mangas, F. (2007). HealthGear: automatic sleep apnea detection and monitoring with a mobile phone. Journal of Communications, 2(2), 1–9.
- Perlis, M. L., Jungquist, C., Smith, M. T., & Posner, D. (2006). Cognitive behavioral treatment of insomnia: A session-by-session guide (Vol. 1). Springer Science & Business Media.
- Quantified Self. http://quantifiedself.com.
- Shirazi, A. S., Clawson, J., Hassanpour, Y., Tourian, M. J., Schmidt, A., Chi, E. H, Borazio, M., & Laerhoven, K. V. (2013). Already up? using mobile phones to track & share sleep behavior. IJHCS, 71(9), 878–888.
- Sleep Cycle. http://www.sleepcycle.com.
- Stepanski, E. J. & Wyatt, J. K. (2003). Use of sleep hygiene in the treatment of insomnia. Sleep medicine reviews, 7(3), 215–225.
- Stone, A. A., Shiffman, S., Schwartz, J. E., Broderick, J. E., & Hufford, M. R. (2003). Patient compliance with paper and electronic diaries. Control Clin Trials, 24(2), 182–199.
- Thomas, D. R. (2006). A general inductive approach for analyzing qualitative evaluation data. Am J Eval, 27(2), 237–246.
- Truong, K. N., Shihipar, T., & Wigdor, D. J. (2014). Slide to X: unlocking the potential of smartphone unlocking. CHI ’14, 3635–3644.