Author(s):
- Jones, Simon L.
- Kelly, Ryan
Abstract:
Personal informatics systems are tools that capture, aggregate, and analyze data from distinct facets of their users’ lives. This article adopts a mixed-methods approach to understand the problem of information overload in personal informatics systems. We report findings from a 3-month study in which 20 participants collected multifaceted personal tracking data and used a system called Exist to reveal statistical correlations within their data. We explore the challenges that participants faced in reviewing the information presented by Exist, and we identify characteristics that exemplify “interesting” correlations. Based on these findings, we develop automated filtering mechanisms that aim to prevent information overload and support users in extracting interesting insights. Our approach deals with information overload by reducing the number of correlations shown to users by about 55% on average and increases the percentage of displayed correlations rated as interesting to about 81%, representing a 34 percentage point improvement over filters that only consider statistical significance at p < .05. We demonstrate how this curation can be achieved using objective data harvested by the system, including the use of Google Trends data as a proxy for subjective user interest.
Document:
https://doi.org/10.1080/07370024.2017.1302334
References
- Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 1994 International Conference on Very Large Databases. San Francisco, CA: Morgan Kaufmann. [Google Scholar]
- Barton, A. J. (2012). The regulation of mobile health applications. BMC Medicine, 10, 46. doi:10.1186/1741-7015-10-46 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Bawden, D., & Robinson, L. (2009). The dark side of information: Overload, anxiety and other paradoxes and pathologies. Journal of Information Science, 35(2), 180–191. doi:10.1177/0165551508095781 [Crossref], [Web of Science ®], [Google Scholar]
- Belkin, N. J., & Croft, W. B. (1992). Information filtering and information retrieval: Two sides of the same coin? Communications of the ACM, 35(12), 29–38. doi:10.1145/138859.138861 [Crossref], [Web of Science ®], [Google Scholar]
- Bentley, F., Tollmar, K., Stephenson, P., Levy, L., Jones, B., Robertson, S., & Wilson, J. (2013). Health Mashups: Presenting statistical patterns between wellbeing data and context in natural language to promote behavior change. ACM Transactions on Computer-Human Interaction (TOCHI), 20(5), 30. doi:10.1145/2503823 [Crossref], [Web of Science ®], [Google Scholar]
- Bernstein, M., Hong, L., Kairam, S., Chi, E., & Suh, B. (2010). A torrent of tweets: Managing information overload in online social streams. Proceedings of the CHI 2010 Workshop on Microblogging: What and How Can We Learn From It? New York, NY: ACM. [Google Scholar]
- Chewning, E. G., & Harrell, A. M. (1990). The effect of information load on decision makers’ cue utilization levels and decision quality in a financial distress decision task. Accounting, Organizations and Society, 15(6), 527–542. doi:10.1016/0361-3682(90)90033-Q [Crossref], [Web of Science ®], [Google Scholar]
- Choe, E. K., Lee, B., & Schraefel, M. C. (2015). Characterizing visualization insights from quantified selfers’ personal data presentations. IEEE Computer Graphics and Applications, 35(4), 28–37. doi:10.1109/MCG.2015.51 [Crossref], [Web of Science ®], [Google Scholar]
- Choe, E. K., Lee, N. B., Lee, B., Pratt, W., & Kientz, J. A. (2014). Understanding quantified-selfers’ practices in collecting and exploring personal data. Proceedings of the CHI 2014 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2–9. doi:10.1111/ecor.2012.88.issue-s1 [Crossref], [Web of Science ®], [Google Scholar]
- Chung, C. F., Cook, J., Bales, E., Zia, J., & Munson, S. A. (2015). More than telemonitoring: Health provider use and nonuse of life-log data in irritable bowel syndrome and weight management. Journal of Medical Internet Research, 17(8), e203. doi:10.2196/jmir.4364 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Corbin, J., & Strauss, A. (2008). Basics of qualitative research. London, UK: Sage. [Google Scholar]
- Cosley, D., Akey, K., Alson, B., Baxter, J., Broomfield, M., Lee, S., & Sarabu, C. (2009). Using technologies to support reminiscence. Proceedings of the British HCI Group 2009 Annual Conference on People and Computers. Swinton, UK: British Computer Society. [Google Scholar]
- Cuttone, A., Petersen, M. K., & Larsen, J. E. (2014). Four data visualization heuristics to facilitate reflection in personal informatics. In C. Stephanidis & A. Antona (Eds.), Universal Access in Human-Computer Interaction. Design for All and Accessibility Practice. UAHCI 2014. Lecture Notes in Computer Science (Vol. 8516, pp. 541–552). Cham, Switzerland: Springer International. [Crossref], [Google Scholar]
- Dabbish, L. A., Kraut, R. E., Fussell, S., & Kiesler, S. (2005). Understanding email use: Predicting action on a message. Proceedings of the CHI 2005 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Dingler, T., Sahami, T., & Henze, N. (2014). There is more to well-being than health data: Holistic lifelogging through memory capture. Proceedings of the CHI 2014 Workshop on Beyond Quantified Self: Data for Wellbeing. New York, NY: ACM. [Google Scholar]
- Elsden, C., Kirk, D. S., & Durrant, A. C. (2015). A quantified past: Toward design for remembering with personal informatics. Human–Computer Interaction, 31(6), 518–557. doi:10.1080/07370024.2015.1093422 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Eppler, M. J., & Mengis, J. (2004). The concept of information overload: A review of literature from organization science, accounting, marketing, MIS, and related disciplines. The Information Society, 20(5), 325–344. doi:10.1080/01972240490507974 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Exist. (2016). Homepage. Retrieved from https://exist.io [Google Scholar]
- Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., & Trigg, L. (2005). Weka. In O. Maimon & L. Rokach (Eds.), Data mining and knowledge discovery handbook (pp. 1305–1314). Boston, MA: Springer. [Crossref], [Google Scholar]
- Galbraith, J. R. (1974). Organization design: An information processing view. Interfaces, 4(3), 28–36. doi:10.1287/inte.4.3.28 [Crossref], [Web of Science ®], [Google Scholar]
- Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys (CSUR), 38(3), 9. doi:10.1145/1132960.1132963 [Crossref], [Web of Science ®], [Google Scholar]
- Gurrin, C., Smeaton, A. F., & Doherty, A. R. (2014). Lifelogging: Personal big data. Foundations and Trends in Information Retrieval, 8(1), 1–125. doi:10.1561/1500000033 [Crossref], [Web of Science ®], [Google Scholar]
- Haddadi, H., & Brown, I. (2014). Quantified self and the privacy challenge. SCL Technology Law Futures Forum. Retrieved from http://www.eecs.qmul.ac.uk/%7Ehamed/papers/qselfprivacy2014.pdf [Google Scholar]
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18. doi:10.1145/1656274 [Crossref], [Google Scholar]
- Hallowell, E. M. (2005). Overloaded circuits: Why smart people underperform. Harvard Business Review, 83(1), 54–62. [PubMed], [Web of Science ®], [Google Scholar]
- Hanani, U., Shapira, B., & Shoval, P. (2001). Information filtering: Overview of issues, research and systems. User Modeling and User-Adapted Interaction, 11(3), 203–259. doi:10.1023/A:1011196000674 [Crossref], [Web of Science ®], [Google Scholar]
- Hello Code. (2015). 2015 in review. Retrieved March 31, 2016, from http://blog.hellocode.co/post/2015-review/ [Google Scholar]
- Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. Proceedings of the SIGIR 1999 International Conference on Research and Development in Information Retrieval. New York, NY: ACM. [Crossref], [Google Scholar]
- Hiltz, S. R., & Turoff, M. (1985). Structuring computer-mediated communication systems to avoid information overload. Communications of the ACM, 28(7), 680–689. doi:10.1145/3894.3895 [Crossref], [Web of Science ®], [Google Scholar]
- Huckvale, K., Car, M., Morrison, C., & Car, J. (2012). Apps for asthma self-management: A systematic assessment of content and tools. BMC Medicine, 10(1), 144. doi:10.1186/1741-7015-10-144 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Jones, S. L. (2015). Exploring correlational information in aggregated quantified self data dashboards. Proceedings of the UbiComp/ISWC 2015 Workshop on New Frontiers of Quantified Self. New York, NY: ACM. [Crossref], [Google Scholar]
- Jones, S. L., Ferreira, D., Hosio, S., Goncalves, J., & Kostakos, V. (2015). Revisitation analysis of smartphone app use. Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Crossref], [Google Scholar]
- Jones, S. L., & Kelly, R. (2016). Sensemaking challenges in personal informatics and self-monitoring systems. Proceedings of the CHI 2016 Workshop on Interactive Systems in Healthcare. New York, NY: ACM. [Google Scholar]
- Karkar, R., Fogarty, J., Kientz, J. A., Munson, S. A., Vilardaga, R., & Zia, J. (2015). Opportunities and challenges for self-experimentation in self-tracking. Adjunct Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the ISWC 2015 International Symposium on Wearable Computers. New York, NY: ACM. [Crossref], [Google Scholar]
- Kay, M., Choe, E. K., Shepherd, J., Greenstein, B., Watson, N., Consolvo, S., & Kientz, J. A. (2012). Lullaby: A capture & access system for understanding the sleep environment. Proceedings of the UbiComp 2012 Conference on Ubiquitous Computing. New York, NY: ACM. [Crossref], [Google Scholar]
- Kay, M., Patel, S. N., & Kientz, J. A. (2015). How good is 85%? A survey tool to connect classifier evaluation to acceptability of accuracy. Proceedings of the CHI 2015 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
- Keller, K. L., & Staelin, R. (1987). Effects of quality and quantity of information on decision effectiveness. Journal of Consumer Research, 14, 200–213. doi:10.1086/jcr.1987.14.issue-2 [Crossref], [Web of Science ®], [Google Scholar]
- Kelly, R., & Payne, S. J. (2014). Collaborative web search in context: A study of tool use in everyday tasks. Proceedings of the CSCW 2014 Conference on Computer Supported Cooperative Work & Social Computing. New York, NY: ACM. [Crossref], [Google Scholar]
- Koroleva, K., Krasnova, H., & Günther, O. (2010).‘STOP SPAMMING ME!’ – exploring information overload on facebook. Proceedings of the AMCIS 2010 Americas Conference on Information Systems. Atlanta, GA: Association for Information Systems. [Google Scholar]
- Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 110(15), 5802–5805. doi:10.1073/pnas.1218772110 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Lara, O. D., & Labrador, M. A. (2013). A survey on human activity recognition using wearable sensors. IEEE Communications Surveys & Tutorials, 15(3), 1192–1209. doi:10.1109/SURV.2012.110112.00192 [Crossref], [Web of Science ®], [Google Scholar]
- Lee, S., Kim, S.-H., Hung, Y.-H., Lam, H., Y.-A, K., & Yi, J. S. (2016). How do people make sense of unfamiliar visualizations?: A grounded model of novice’s information visualization sensemaking. IEEE Transactions on Visualization and Computer Graphics, 22(1), 499–508. doi:10.1109/TVCG.2015.2467195 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Li, I. (2011). Personal informatics and context: Using context to reveal factors that affect behavior (Unpublished doctoral dissertation). Pittsburgh, PA: Carnegie Mellon University. [Google Scholar]
- Li, I., Dey, A., & Forlizzi, J. (2010). A stage-based model of personal informatics systems. Proceedings of the CHI 2010 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Li, I., Dey, A. K., & Forlizzi, J. (2011). Understanding my data, myself: Supporting self-reflection with ubicomp technologies. Proceedings of the UbiComp 2011 International Conference on Ubiquitous Computing. New York, NY: ACM. [Crossref], [Google Scholar]
- Li, I., Forlizzi, J., & Dey, A. (2010). Know thyself: Monitoring and reflecting on facets of one’s life. Proceedings of the CHI 2010 Conference on Human Factors in Computing Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Lupton, D. (2013). Understanding the human machine [Commentary]. IEEE Technology and Society Magazine, 32(4), 25–30. doi:10.1109/MTS.2013.2286431 [Crossref], [Web of Science ®], [Google Scholar]
- Mamykina, L. A., Smaldone, M., & Bakken, S. R. (2015). Adopting the sensemaking perspective for chronic disease self-management. Journal of Biomedical Informatics, 56, 406–417. doi:10.1016/j.jbi.2015.06.006 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Mano, R. S., & Mesch, G. S. (2010). E-mail characteristics, work performance and distress. Computers in Human Behavior, 26, 61–69. doi:10.1016/j.chb.2009.08.005 [Crossref], [Web of Science ®], [Google Scholar]
- McGrath, M. J., & Scanaill, C. N. (2013). Wellness, fitness, and lifestyle sensing applications. In M. J. McGrath & C. N. Scanaill (Eds.), Sensor Technologies (pp. 217–248). New York, NY: Springer. [Crossref], [Google Scholar]
- Oulasvirta, A., Hukkinen, J. P., & Schwartz, B. (2009). When more is less: The paradox of choice in search engine use. Proceedings of the SIGIR 2009 International Conference on Research and Development in Information Retrieval. New York, NY: ACM. [Crossref], [Google Scholar]
- Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. London, UK: Penguin. [Google Scholar]
- Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of Neuroengineering and Rehabilitation, 9, 1. doi:10.1186/1743-0003-9-21 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Paul, S. A., & Morris, M. R. (2009). CoSense: Enhancing sensemaking for collaborative web search. Proceedings of the CHI 2009 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Pegoraro, R. (2011, February 14). Facebook news feed filtering can make friends vanish. The Washington Post. Retrieved from http://voices.washingtonpost.com/fasterforward/2011/02/facebook_news_feed_filters_can.html [Google Scholar]
- Petersen, D., Steele, J., & Wilkerson, J. (2009). WattBot: A residential electricity monitoring and feedback system. Proceedings of the CHI 2009 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
- Phillips, J. K., & Battaglia, D. A. (2003). Instructional methods for training sensemaking skills. Proceedings of the Interservice/Industry Training, Simulation, and Education Conference. Orlando, FL: National Training Systems Association. [Google Scholar]
- Preis, T., Moat, H. S., & Stanley, H. E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3, 1684. doi:10.1038/srep01684 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Rader, E., & Gray, R. (2015). Understanding user beliefs about algorithmic curation in the Facebook news feed. Proceedings of the CHI 2015 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Rapp, A., & Cena, F. (2014). Self-monitoring and technology: Challenges and open issues in personal informatics. Proceedings of the International Conference on Universal Access in Human-Computer Interaction. Cham, Switzerland: Springer International. [Google Scholar]
- Rapp, A., & Cena, F. (2016). Personal informatics for everyday life: How users without prior self-tracking experience engage with personal data. International Journal of Human-Computer Studies, 94, 1–17. doi:10.1016/j.ijhcs.2016.05.006 [Crossref], [Web of Science ®], [Google Scholar]
- Ricci, F., Rokach, L., & Shapira, B. (2011). In F. Ricci, R. Lior, B. Shapira & P. B. Kantor (Eds.), Introduction to recommender systems handbook (pp. 1–35). Boston, MA: Springer. [Google Scholar]
- Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. C. (2014). Personal tracking as lived informatics. Proceedings of the CHI 2014 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Rose, E. (2010). Continuous partial attention: Reconsidering the role of online learning in the age of interruption. Educational Technology Magazine: the Magazine for Managers of Change in Education, 50(4), 41–46. [Google Scholar]
- Russell, D. M., Stefik, M. J., Pirolli, P., & Card, S. K. (1993). The cost structure of sensemaking. In Proceedings of the CHI 1993 conference on human factors in computer systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Savolainen, R. (2007). Filtering and withdrawing: Strategies for coping with information overload in everyday contexts. Journal of Information Science, 33(5), 611–621. doi:10.1177/0165551506077418 [Crossref], [Web of Science ®], [Google Scholar]
- Schick, A. G., Gordon, L. A., & Haka, S. (1990). Information overload: A temporal approach. Accounting, Organizations and Society, 15(3), 199–220. doi:10.1016/0361-3682(90)90005-F [Crossref], [Web of Science ®], [Google Scholar]
- Schneider, S. C. (1987). Information overload: Causes and consequences. Human Systems Management, 7(2), 143–153. [Web of Science ®], [Google Scholar]
- Schwartz, B., Ward, A., Monterosso, J., Lyubomirsky, S., White, K., & Lehman, D. R. (2002). Maximizing versus satisficing: Happiness is a matter of choice. Journal of Personality and Social Psychology, 83(5), 1178. doi:10.1037/0022-3514.83.5.1178 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Shah, N. H. (2015). Using big data. In P. R. O. Payne & P. J. Embi (Eds.), Translational informatics (pp. 119–128). London, UK: Springer. [Crossref], [Google Scholar]
- Shapira, B., Hanani, U., Raveh, A., & Shoval, P. (1997). Information filtering: A new two-phase model using stereotypic user profiling. Journal of Intelligent Information Systems, 8(2), 155–165. doi:10.1023/A:1008676625559 [Crossref], [Google Scholar]
- Soleymani, M., Pantic, M., & Pun, T. (2012). Multimodal emotion recognition in response to videos. IEEE Transactions on Affective Computing, 3(2), 211–223. doi:10.1109/T-AFFC.2011.37 [Crossref], [Web of Science ®], [Google Scholar]
- Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big Data, 1(2), 85–99. doi:10.1089/big.2012.0002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Sweeny, K., Melnyk, D., Miller, W., & Shepperd, J. A. (2010). Information avoidance: Who, what, when, and why. Review of General Psychology, 14(4), 340. doi:10.1037/a0021288 [Crossref], [Web of Science ®], [Google Scholar]
- Teevan, J., Dumais, S. T., & Horvitz, E. (2005). Personalizing search via automated analysis of interests and activities. Proceedings of the SIGIR 2005 International Conference on Research and Development in Information Retrieval. New York, NY: ACM. [Crossref], [Google Scholar]
- Tollmar, K., Bentley, F., & Viedma, C. (2012).Mobile health mashups: Making sense of multiple streams of wellbeing and contextual data for presentation on a mobile device. Proceedings of the PervasiveHealth 2012 International Conference on Pervasive Computing Technologies for Healthcare. New York, NY: IEEE Press. [Crossref], [Google Scholar]
- van Rijsbergen, C. J. (1975). Evaluation. In C. J. Van Rijsbergen (Ed.), Information retrieval (pp. 95–132). London, UK: Butterworth & Co. [Google Scholar]
- Weick, K. E. (1995). Sensemaking in organizations (Vol. 3). Thousand Oaks, CA: Sage. [Google Scholar]
- Whittaker, S. (2008). Making sense of sensemaking. In T. Erickson & D. W. McDonald (Eds), HCI remixed: Reflections on works that have influenced the HCI community. Boston, MA: MIT Press. [Google Scholar]
- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools and techniques. Cambridge, MA: Morgan Kaufmann. [Google Scholar]
- Wolf, G. (2010, April 28). The data-driven life. The New York Times. Retrieved from http://www.nytimes.com/2010/05/02/magazine/02self-measurement-t.html [Google Scholar]
- Zhong, N., Yao, Y. Y., & Ohishima, M. (2003). Peculiarity oriented multidatabase mining. IEEE Transactions on Knowledge and Data Engineering, 15(4), 952–960. doi:10.1109/TKDE.2003.1209011 [Crossref], [Web of Science ®], [Google Scholar]