Author(s):
- Chen, Bi Yu
- Wang, Yafei
- Wang, Donggen
- Li, Qingquan
- Lam, William H.K.
- Shaw, Shih Lung
Abstract:
Many existing accessibility studies ignore human mobility due to the lack of large-scale human mobility data. This study investigates the impacts of human mobility on accessibility using massive mobile phone tracking data collected in Shenzhen, China. In this study, human mobility information is extracted from mobile phone tracking data using a time-geographic approach. The accessibility of each phone user is evaluated using fine spatial resolution across the entire city. The impacts of human mobility on accessibility are quantified by using relative accessibility ratios between phone users and a virtual stationary user in the same residential location. Results of this study enrich understandings of how land use influences relationships between humanmobility and accessibility. For resource-poor regions with sparse service facilities, human mobility can greatly enhance individual accessibility. In contrast, for resource-rich regions with dense service facilities, human mobility can even reduce individual accessibility. Overall, human mobility can reduce spatial inequity of accessibility for people living in different regions of the city. The results of this study also have several important methodological implications for including human mobility and time dimension in accessibility evaluations.
Document:
https://www.tandfonline.com/doi/full/10.1080/24694452.2017.1411244
References:
- Ahas, R., A. Aasa, S. Silm, and M. Tiru. 2010. Daily rhythms of suburban commuters’ movements in the Tallinn metropolitan area: Case study with mobile positioning data. Transportation Research Part C 18 (1):45–54. [Crossref], [Web of Science ®], [Google Scholar]
- Ahas, R., A. Aasa, Y. Yuan, M. Raubal, Z. Smoreda, Y. Liu, C. Ziemlicki, M. Tiru, and M. Zook. 2015. Everyday space–time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn. International Journal of Geographical Information Science 29 (11):2017–39. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Ahas, R., S. Silm, O. Järv, E. Saluveer, and M. Tiru. 2010. Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology 17 (1):3–27. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Biljecki, F., H. Ledoux, and P. van Oosterom. 2013. Transportation mode-based segmentation and classification of movement trajectories. International Journal of Geographical Information Science 27 (2):385–407. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Bohte, W., and K. Maat. 2009. Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands. Transportation Research Part C 17 (3):285–97. [Crossref], [Web of Science ®], [Google Scholar]
- Breheny, M. J. 1978. The measurement of spatial opportunity in strategic planning. Regional Studies 12 (4):463–79. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Caceres, N., L. M. Romero, F. G. Benitez, and J. M. D. Castillo. 2012. Traffic flow estimation models using cellular phone data. IEEE Transactions on Intelligent Transportation Systems 13 (3):1430–41. [Crossref], [Web of Science ®], [Google Scholar]
- Casas, I. 2007. Social exclusion and the disabled: An accessibility approach. TheProfessional Geographer 59 (4):463–77. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Chen, B. Y., W. H. K. Lam, A. Sumalee, Q. Q. Li, and Z. C. Li. 2012. Vulnerability analysis for large-scale and congested road networks with demand uncertainty. Transportation Research Part A 46 (3):501–16. [Google Scholar]
- Chen, B. Y., Q. Q. Li, D. G. Wang, S.-L. Shaw, W. H. K. Lam, H. Yuan, and Z. X. Fang. 2013. Reliable space–time prisms under travel time uncertainty. Annals of the Association of American Geographers 103 (6):1502–21. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Chen, B. Y., Y. Wang, D. Wang, Q. Q. Li, and S.-L. Shaw. 2017. Estimating individual activity spaces: A comparative analysis using longitudinal GPS tracking data. Working paper, Wuhan University, Wuhan, China. [Google Scholar]
- Chen, B. Y., H. Yuan, Q. Q. Li, W. H. K. Lam, S.-L. Shaw, and K. Yan. 2014. Map matching algorithm for large-scale low-frequency floating car data. International Journal of Geographical Information Science 28 (1):22–38. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Chen, B. Y., H. Yuan, Q. Q. Li, S.-L. Shaw, W. H. K. Lam, and X. Chen. 2016. Spatiotemporal data model for network time geographic analysis in the era of big data. International Journal of Geographical Information Science 30 (6):1041–71. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Chen, B. Y., H. Yuan, Q. Li, D. Wang, S.-L. Shaw, H.-P. Chen, and W. H. K. Lam. 2017. Measuring place-based accessibility under travel time uncertainty. International Journal of Geographical Information Science 31 (4):783–804. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Chen, H.-P., B. Y. Chen, Y. F. Wang, and Q. Q. Li. 2016. Efficient geo-computational algorithms for constructing space–time prisms in road networks. ISPRS International Journal of Geo-Information 5 (11):214. [Crossref], [Web of Science ®], [Google Scholar]
- Chen, J., S. L. Shaw, H. B. Yu, F. Lu, Y. W. Chai, and Q. L. Jia. 2011. Exploratory data analysis of activity diary data: A space–time GIS approach. Journal of Transport Geography 19 (3):394–404. [Crossref], [Web of Science ®], [Google Scholar]
- Chen, X., and M. P. Kwan. 2012. Choice set formation with multiple flexible activities under space–time constraints. International Journal of Geographical Information Science 26 (5):941–61. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Delafontaine, M., T. Neutens, and N. V. D. Weghe. 2012. A GIS toolkit for measuring and mapping space–time accessibility from a place-based perspective. International Journal of Geographical Information Science 26 (6):1131–54. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Delbosc, A., and G. Currie. 2011. Using Lorenz curves to assess public transport equity. Journal of Transport Geography 19 (6):1252–59. [Crossref], [Web of Science ®], [Google Scholar]
- Fang, Z. X., W. Tu, Q. Q. Li, and Q. P. Li. 2011. A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities. Journal of Transport Geography 19 (4):623–34. [Crossref], [Web of Science ®], [Google Scholar]
- Farber, S., T. Neutens, H. J. Miller, and X. Li. 2013. The social interaction potential of metropolitan regions: A time-geographic measurement approach using joint accessibility. Annals of the Association of American Geographers 103 (3):483–504. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Feng, T., and H. J. P. Timmermans. 2013. Transportation mode recognition using GPS and accelerometer data. Transportation Research Part C 37:118–30. [Crossref], [Web of Science ®], [Google Scholar]
- Geurs, K. T., and B. van Wee. 2004. Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography 12 (2):127–40. [Crossref], [Google Scholar]
- Gonzalez, M. C., C. A. Hidalgo, and A. L. Barabasi. 2008. Understanding individual human mobility patterns. Nature 453:779–82. [Crossref], [Web of Science ®], [Google Scholar]
- Hägerstrand, T. 1970. What about people in regional science? Papers in Regional Science 24 (1):7–24. [Crossref], [Google Scholar]Horner, M. W., and B. S. Wood. 2014. Capturing individuals’ food environments using flexible space–time accessibility measures. Applied Geography 51:99–107. [Crossref], [Web of Science ®], [Google Scholar]
- Iqbal, M. S., C. F. Choudhury, P. Wang, and M. C. González. 2014. Development of origin-destination matrices using mobile phone call data. Transportation Research Part C 40:63–74. [Crossref], [Web of Science ®], [Google Scholar]
- Janelle, D. G. 1969. Spatial organization: A model and concept. Annals of the Association of American Geographers 59:348–64. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Jones, M., and A. R. Pebley. 2014. Redefining neighborhoods using common destinations: Social characteristics of activity spaces and home census tracts compared. Demography 51 (3):727–52. [Crossref], [Web of Science ®], [Google Scholar]
- Kamruzzaman, M., and J. Hine. 2012. Analysis of rural activity spaces and transport disadvantage using a multi-method approach. Transport Policy 19 (1):105–20. [Crossref], [Web of Science ®], [Google Scholar]
- Kim, H.-M., and M.-P. Kwan. 2003. Space–time accessibility measures: A geocomputational algorithm with a focus on the feasible opportunity set and possible activity duration. Journal of Geographical Systems 5 (1):71–91. [Crossref], [Google Scholar]
- Kwan, M. P. 1998. Space–time and integral measures of individual accessibility: A comparative analysis using a point-based framework. Geographical Analysis 30 (3):191–216. [Crossref], [Web of Science ®], [Google Scholar]
- ———. 1999. Gender and individual access to urban opportunities: A study using space–time measures. TheProfessional Geographer 51 (2):210–27. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- ———. 2012. The uncertain geographic context problem. Annals of the Association of American Geographers 102 (5):958–68. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- ———. 2013. Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility. Annals of the Association of American Geographers 103 (5):1078–86. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- ———. 2016. Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Annals of the American Association of Geographers 106 (2):274–82. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Kwan, M.-P., and J. Weber. 2003. Individual accessibility revisited: Implications for geographical analysis in the twenty-first century. Geographical Analysis 35 (4):341–53. [Crossref], [Web of Science ®], [Google Scholar]
- Langford, M., and G. Higgs. 2010. Accessibility and public service provision: Evaluating the impacts of the post office network change programme in the UK. Transactions of the Institute of British Geographers 35 (4):585–601. [Crossref], [Web of Science ®], [Google Scholar]
- Levine, J., and L. D. Frank. 2007. Transportation and land-use preferences and residents’ neighborhood choices: The sufficiency of compact development in the Atlanta region. Transportation 34 (2):255–74. [Crossref], [Web of Science ®], [Google Scholar]Li, D., J. Shan, Z. Shao, X. Zhou, and Y. Yao. 2013. Geomatics for smart cities: Concept, key techniques, and applications. Geo-spatial Information Science 16 (1):13–24. [Taylor & Francis Online], [Google Scholar]
- McCray, T., and N. Brais. 2007. Exploring the role of transportation in fostering social exclusion: The use of GIS to support qualitative data. Networks and Spatial Economics 7 (4):397–412. [Crossref], [Web of Science ®], [Google Scholar]
- Miller, H. J. 1999. Measuring space–time accessibility benefits within transportation networks: Basic theory and computational procedures. Geographical Analysis 31 (2):187–212. [Crossref], [Web of Science ®], [Google Scholar]
- ———. 2005a. A measurement theory for time geography. Geographical Analysis 37 (1):17–45. [Crossref], [Web of Science ®], [Google Scholar]
- ———. 2005b. Necessary space–time conditions for human interaction. Environment and Planning B 32:381–401. [Crossref], [Web of Science ®], [Google Scholar]
- ———. 2007. Place-based versus people-based geographic information science. Geography Compass 1 (3):503–35. [Crossref], [Google Scholar]
- Miller, H. J., and M. F. Goodchild. 2015. Data-driven geography. GeoJournal 80 (4):449–61. [Crossref], [Web of Science ®], [Google Scholar]
- Neutens, T., T. Schwanen, and F. Witlox. 2011. The prism of everyday life: Towards a new research agenda for time geography. Transport Reviews 31 (1):25–47. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Neutens, T., T. Schwanen, F. Witlox, and P. De Maeyer. 2010. Equity of urban service delivery: A comparison of different accessibility measures. Environment and Planning A 42 (7):1613–35. [Crossref], [Web of Science ®], [Google Scholar]
- Neutens, T., N. Van de Weghe, F. Witlox, and P. De Maeyer. 2008. A three-dimensional network-based space–time prism. Journal of Geographical Systems 10 (1):89–107. [Crossref], [Web of Science ®], [Google Scholar]
- Niedzielski, M. A., and E. E. Boschmann. 2014. Travel time and distance as relative accessibility in the journey to work. Annals of the Association of American Geographers 104 (6):1156–82. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Omer, I. 2006. Evaluating accessibility using house-level data: A spatial equity perspective. Computers, Environment and Urban Systems 30 (3):254–74. [Crossref], [Web of Science ®], [Google Scholar]
- Páez, A., R. G. Mercado, S. Farber, C. Morency, and M. Roorda. 2010. Relative accessibility deprivation indicators for urban settings: Definitions and application to food deserts in Montreal. Urban Studies 47 (7):1415–38. [Crossref], [Web of Science ®], [Google Scholar]
- Patterson, Z., and S. Farber. 2015. Potential path areas and activity spaces in application: A review. Transport Reviews 35 (6):679–700. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Pei, T., S. Sobolevsky, C. Ratti, S.-L. Shaw, T. Li, and C. Zhou. 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science 28 (9):1988–2007. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Preston, J., and F. Rajé. 2007. Accessibility, mobility and transport-related social exclusion. Journal of Transport Geography 15 (3):151–60. [Crossref], [Web of Science ®], [Google Scholar]
- Ren, F., D. Tong, and M.-P. Kwan. 2014. Space–time measures of demand for service: Bridging location modelling and accessibility studies through a time-geographic framework. Geografiska Annaler: Series B 96 (4):329–44. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Rogalsky, J. 2010. The working poor and what GIS reveals about the possibilities of public transit. Journal of Transport Geography 18 (2):226–37. [Crossref], [Web of Science ®], [Google Scholar]
- Schönfelder, S., and K. W. Axhausen. 2003. Activity spaces: Measures of social exclusion? Transport Policy 10 (4):273–86. [Crossref], [Google Scholar]
- Shen, L., and P. R. Stopher. 2013. A process for trip purpose imputation from Global Positioning System data. Transportation Research Part C 36:261–67. [Crossref], [Web of Science ®], [Google Scholar]
- Sherman, J. E., J. Spencer, J. S. Preisser, W. M. Gesler, and T. A. Arcury. 2005. A suite of methods for representing activity space in a healthcare accessibility study. International Journal of Health Geographics 4:24. [Crossref], [Google Scholar]
- Song, C. M., Z. H. Qu, N. Blumm, and A. L. Barabasi. 2010. Limits of predictability in human mobility. Science 327:1018–21. [Crossref], [Web of Science ®], [Google Scholar]
- Spearman, C. 1904. The proof and measurement of association between two things. The American Journal of Psychology 15:72–101. [Crossref], [Web of Science ®], [Google Scholar]
- Stanley, J., D. A. Hensher, J. Stanley, G. Currie, W. H. Greene, and D. Vella-Brodrick. 2011. Social exclusion and the value of mobility. Journal of Transport Economics and Policy 45:197–222. [Web of Science ®], [Google Scholar]
- Stevens, M. R. 2017. Does compact development make people drive less? Journal of the American Planning Association 83 (1):7–18. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Timmermans, H., T. Arentze, and C. H. Joh. 2002. Analysing space–time behaviour: New approaches to old problems. Progress in Human Geography 26 (2):175–90. [Crossref], [Web of Science ®], [Google Scholar]
- van Wee, B., and K. Geurs. 2011. Discussing equity and social exclusion in accessibility evaluations. European Journal of Transport and Infrastructure Research 11 (4):350–67. [Web of Science ®], [Google Scholar]
- van Wee, B., and S. Handy. 2016. Key research themes on urban space, scale, and sustainable urban mobility. International Journal of Sustainable Transportation 10 (1):18–24. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Xu, Y., S.-L. Shaw, Z. Zhao, L. Yin, Z. Fang, and Q. Li. 2015. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach. Transportation 42 (4):625–46. [Crossref], [Web of Science ®], [Google Scholar]
- Xu, Y., S.-L. Shaw, Z. Zhao, L. Yin, F. Lu, J. Chen, Z. Fang, and Q. Li. 2016. Another tale of two cities: Understanding human activity space using actively tracked cellphone location data. Annals of the American Association of Geographers 106 (2):489–502. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Yang, W., B. Y. Chen, X. Cao, T. Li, and P. Li. 2017. The spatial characteristics and influencing factors of modal accessibility gaps: A case study for Guangzhou, China. Journal of Transport Geography 60:21–32. [Crossref], [Web of Science ®], [Google Scholar]
- Zang, H., and J. Bolot. 2011. Anonymization of location data does not work: A large-scale measurement study. Paper presented at the 17th Annual International Conference on Mobile Computing and Networking, Las Vegas, NV, September 19–23. [Google Scholar]