Author(s):

  • Pantzar, Mika
  • Ruckenstein, Minna
  • Mustonen, Veera

Abstract:

A long-term research focus on the temporality of everyday life has become revitalised with new tracking technologies that allow methodological experimentation and innovation. This article approaches rhythms of daily lives with heart-rate variability measurements that use algorithms to discover physiological stress and recovery. In the spirit of the ‘social life of methods’ approach, we aggregated individual data (n = 35) in order to uncover temporal rhythms of daily lives. The visualisation of the aggregated data suggests both daily and weekly patterns. Daily stress was at its highest in the mornings and around eight o’clock in the evening. Weekend stress patterns were dissimilar, indicating a stress peak in the early afternoon especially for men. In addition to discussing our explorations using quantitative data, the more general aim of the article is to explore the potential of new digital and mobile physiological tracking technologies for contextualising the individual in the everyday.

Document:

https://www.tandfonline.com/doi/full/10.1080/14461242.2016.1184580

References:
  1. Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: A review. Medical and Biological Engineering and Computing, 44, 1031–1051. doi:10.1007/s11517-006-0119-0 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  2. Andersson, K., Nafus, D., Rattenbury, T., & Aipperspach, R. (2009). Numbers have qualities too: Experiences with ethno-mining. EPIC Proceedings 2009, 1, 123–140. doi:10.1111/j.1559-8918.2009.tb00133.x [Crossref][Google Scholar]
  3. Beaudin, J., Intille, S., & Morris, M. (2006). To track or not to track: User reactions to concepts in longitudinal health monitoring. Journal of Medical Internet Research, 8(4), e29. doi:10.2196/jmir.8.4.e29. [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  4. Bender, J., & Marinar, M. (2010). The culture of diagram. Stanford, CA: Stanford University Press. [Google Scholar]
  5. Bowker, G., Baker, K., Millerand, F., & Ribes, D. (2010). Toward information infrastructure studies: Ways of knowing in a networked environment. In J. Hunsinger, L. Klastrup, & M. Allen (Eds.), International handbook of internet research (pp. 97–117). Dordrecht: Springer. [Crossref][Google Scholar]
  6. Coole, D., & Frost, S. (Eds.). (2010). New materialisms: Ontology, agency, and politics. Durham: Duke University Press. [Crossref][Google Scholar]
  7. DeLyser, D., & Sui, D. (2012). Crossing the qualitative-quantitative divide II: Inventive approaches to big data, mobile methods, and rhythmanalysis. Progress in Human Geography, 37, 293–305. doi:10.1177/0309132512444063 [Crossref], [Web of Science ®][Google Scholar]
  8. Edwards, J., Harvey, P., & Wade, P. (Eds.). (2010). Technologized images, technologized bodies. New York, NY: Berghahn Books. [Google Scholar]
  9. Ellegård, K., & Vilhelmson, B. (2004). Home as a pocket of local order: Everyday activities and the friction of distance. Geografiska Annaler: Series B, Human Geography, 86, 281–296. doi:10.1111/j.0435-3684.2004.00168.x [Taylor & Francis Online][Google Scholar]
  10. European Commission. (2004). How Europeans spend their time. Everyday life of women and men. Data 1998–2002. Eurostat. Pocketbooks: Theme 3: Population and social conditions. Luxembourg: Office for Official Publications of the European Communities. [Google Scholar]
  11. Foster, R., & Kreitzman, L. (2004). Rhythms of life: The biological clocks that control the daily lives of every living things. New Haven: Yale University Press. [Google Scholar]
  12. Frade, C. (2013). Time and method: After survival, for a renewed praxis of social theory (CRESC Working Paper Series, 132, pp. 1–17). University of Manchester. Retrieved from http://usir.salford.ac.uk/id/eprint/30630 [Google Scholar]
  13. Freese, J., Li, J.-C., & Wade, L. (2003). The potential relevances of biology to social inquiry. Annual Review of Sociology, 29, 233–256. doi:10.1146/annurev.soc.29.010202.100012 [Crossref], [Web of Science ®][Google Scholar]
  14. Gershuny, J. (2000). Changing times. Work and leisure in postindustrial society. Oxford: Oxford University Press. [Google Scholar]
  15. Gouldner, A. (1975). Sociology and the everyday life. In L. Corer (Ed.), The idea of social structure, papers in honor of Robert K. Merton (pp. 417–432). New York, NY: Harcourt Brace Jovanovich. [Google Scholar]
  16. Haraway, D. (1998). Deanimations: Maps and portraits of life itself. In P. Galison & C. Jones (Eds.), Picturing science, producing Art (pp. 181–210). New York, NY: Routledge. [Google Scholar]
  17. Heaphy, E., & Dutton, J. (2008). Positive social interactions and human body at work: Linking organizations and physiology. Academy of Management Review, 33, 137–162. doi:10.5465/AMR.2008.27749365 [Crossref], [Web of Science ®][Google Scholar]
  18. Highmore, B. (2002). Everyday life and cultural theory. London: Routledge. [Crossref][Google Scholar]
  19. Hinkle, L. E. (1974). The concept of “stress” in the biological and social sciences. International Journal of Psychiatry in Medicine, 5, 335–357. doi:10.2190/91DK-NKAD-1XP0-Y4RG [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  20. Kettunen, J. (1999). Methodological and empirical advances in the quantitative analysis of spontaneous responses in psychophysiological time series. Helsinki: Helsingin yliopiston psykologian laitoksen tutkimuksia no. 21. Retrieved from http://urn.fi/URN:ISBN:951-45-8719-7 [Google Scholar]
  21. Koolhaas, J., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., … Fuchs, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 35, 1291–301. doi:10.1016/j.neubiorev.2011.02.003 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  22. Koukkari, W., & Sothern, R. (2006). Introducing biological rhythms. New York, NY: Springer. [Google Scholar]
  23. Kugelman, R. (1992). Stress. The nature and history of engineered grief. London: Praeger. [Google Scholar]
  24. Lefebvre, H. (1992/2004). Rhythmanalysis: Space, time and everyday life. Athlone, Contemporary European Thinkers. London: Continuum. [Google Scholar]
  25. Löfgren, O., & Ehn, B. (2010). The secret world of doing nothing. Berkeley: University of California Press. [Crossref][Google Scholar]
  26. Lupton, D. (2012). M-health and health promotion: The digital cyborg and surveillance society. Social Theory & Health, 10, 229–244. doi:10.1057/sth.2012.6 [Crossref], [Web of Science ®][Google Scholar]
  27. Lupton, D. (2015, September 27). Lively data, social fitness and biovalue: The intersections of health self-tracking and social media. Available at SSRN: http://ssrn.com/abstract=2666324 [Google Scholar]
  28. Michelson, W. (2005). Time use. Expanding the explanatory power of the social sciences. London: Paradigm Publisher. [Google Scholar]
  29. Pantzar, M. (2010). Future shock – Discussing changing temporal architecture of daily life. Journal of Future Studies, 14(4), 1–22. [Google Scholar]
  30. Pantzar, M., & Ruckenstein, M. (2014). The heart of everyday analytics: Identifying practices and future domains in self-tracking. Consumption Markets & Culture. doi:10.1080/10253866.2014.899213 [Taylor & Francis Online], [Web of Science ®][Google Scholar]
  31. Pantzar, M., & Shove, E. (2010). Time in practice – Discussing rhythms of practice complexes. Ethnologia Europaea. Journal of European Ethnology, 40(1), 19–29. [Google Scholar]
  32. Rosa, H. (2003). Social acceleration: Ethical and political consequences of a desynchronized high-speed society. Constellations, 10, 3–33. doi:10.1111/1467-8675.00309 [Crossref][Google Scholar]
  33. Rose, N. (2013). The human sciences in a biological age. Theory, Culture and Society, 30(1), 3–34. doi:10.1177/0263276412456569 [Crossref], [Web of Science ®][Google Scholar]
  34. Ruckenstein, M. (2013). Temporalities of addiction. In L. Hansson, U. Holmberg & H. Brembeck (Eds.), Making sense of consumption. Selections from the 2nd nordic conference on consumer research 2012 (pp. 107–118). Göteborg: University of Gothenburg. [Google Scholar]
  35. Ruckenstein, M. (2014). Visualized and interacted life: Personal analytics and engagements with data doubles. Societies, 4(1), 68–84. doi: 10.3390/soc4010068 [Crossref][Google Scholar]
  36. Ruckenstein, M., & Pantzar, M. (2015). Beyond the quantified self: Thematic exploration of a dataistic paradigm. New Media & Society. doi:10.1177/1461444815609081 [Crossref], [Web of Science ®][Google Scholar]
  37. Ruppert, E., Law, J., & Savage, M. (2013). Reassembling social science methods: The challenge of digital devices. Theory, Culture & Society, 30(4), 22–46. doi:10.1177/0263276413484941 [Crossref], [Web of Science ®][Google Scholar]
  38. Savage, M. (2013). The ‘social life of methods’: A critical introduction. Theory, Culture & Society, 30(4), 3–21. doi:10.1177/0263276413486160 [Crossref], [Web of Science ®][Google Scholar]
  39. Schatzki, T. (2010). Timespace and human activity. Lanham, MD: Lexington Books. [Google Scholar]
  40. Selye, H. (1973). The evolution of stress concept. American Scientist, 61, 692–699. Retrieved from http://www.jstor.org/stable/27844072 [PubMed], [Web of Science ®][Google Scholar]
  41. Semmer, N., Grebner, S., & Elfering, A. (2004). Beyond self-report: Using observational, physiological and situation-based measures in research on occupational stress. In P. Perrewé & D. Ganster (Eds.), Emotional and physiological processes and positive intervention strategies (pp. 205–263). Amsterdam: Elsevier. [Google Scholar]
  42. Simpson, P. (2012). Apprehending everyday rhythms: Rhythmanalysis, time-lapse photography, and the space-times of street performance. Cultural Geographies, 19, 423–445. doi:10.1177/1474474012443201 [Crossref], [Web of Science ®][Google Scholar]
  43. Southerton, D. (2003). “Squeezing time”: Allocating practices, co-ordinating networks and scheduling society. Time & Society, 12, 5–25. doi:10.1177/0961463X03012001001 [Crossref], [Web of Science ®][Google Scholar]
  44. Southerton, D. (2006). Analysing the temporal organization of daily life: Social constraints, practices and their allocation. Sociology, 40, 435–454. doi:10.1177/0038038506063668 [Crossref][Google Scholar]
  45. Swan, M. (2012). Sensor mania! The internet of things, objective metrics, and the quantified self 2.0. Journal of Sensor and Actuator Network, 1, 217–253. doi:10.3390/jsan1030217 [Crossref][Google Scholar]
  46. Swan, M. (2013). The Quantified Self: Fundamental disruption in big data science and biological discovery. Big Data, 1, 85–99. doi:10.1089/big.2012.0002 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  47. Thompson, E. (1967). Time, work-discipline, and industrial capitalism. Past and Present, A Journal of Historical Studies, 38(1), 56–97. Retrieved from http://www.jstor.org/stable/649749 doi: 10.1093/past/38.1.56 [Crossref][Google Scholar]
  48. Thrift, N. (2011). Lifeworld Inc. – And what to do about it. Environment and Planning D: Society and Space, 29, 5–26. doi:10.1068/d0310 [Crossref], [Web of Science ®][Google Scholar]
  49. Uusitalo, A., Mets, T., Martinmäki, K., Mauno, S., Kinnunen, U., & Rusko, H. (2011). Heart rate variability related to effort at work. Applied Ergonomics, 42, 830–838. doi:10.1016/j.apergo.2011.01.005 [Crossref], [PubMed], [Web of Science ®][Google Scholar]
  50. Zerubavel, E. (1981). Hidden rhythms: Schedules and calendars in social life. Berkeley: University of California Press. [Google Scholar]