Author(s):
- Matthews, Mark
- Murnane, Elizabeth
- Snyder, Jaime
Abstract:
There has been a recent increase in the development of digital self-tracking tools for managing mental illness. Most of these tools originate from clinical practice and are, as a result, largely clinician oriented. As a consequence, little is known about the self-tracking practices and needs of individuals living with mental illness. This understanding is important to guide the design of future tools to enable people to play a greater role in managing their health. In this article, we present a qualitative study focusing on the self-tracking practices of 10 people with bipolar disorder. We seek to understand the role self-tracking has played as they have come to grips with their diagnosis and attempted to self-manage their health. A central motivation for these participants is to identify risky patterns that may be harbingers of mood episodes, as well as positive trends that support recovery. What emerges is a fragmented picture of self-tracking, with no clear delineation between clinician-initiated and self-initiated practices, as well as considerable challenges participants face in making observations of themselves when their sense of self and emotional state is in flux, uncertain, and unreliable. Informed by these observations, we discuss the merits of a new form of self-tracking that combines manual and automated methods, addresses both clinician and individual needs, helps engage people with bipolar disorder in treatment, and seeks to overcome the significant challenges they face in self-monitoring.
Document:
https://doi.org/10.1080/07370024.2017.1294983
References:
- Abdullah, S., Matthews, M., Frank, E., Doherty, G., Gay, G., & Choudhury, T. (2016). Automatic detection of social rhythms in bipolar disorder. Journal of the American Medical Informatics Association, 23(3), 538–543. doi:10.1093/jamia/ocv200 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Baldessarini, R. J., & Tondo, L. (2003). Suicide risk and treatments for patients with bipolar disorder. Journal of the American Medical Association, 290(11), 1517–1519. doi:10.1001/jama.290.11.1517 [Crossref], [Web of Science ®], [Google Scholar]
- Berk, M., Hallam, K. T., & McGorry, P. D. (2007). The potential utility of a staging model as a course specifier: A bipolar disorder perspective. Journal of Affective Disorders, 100(1), 279–281. doi:10.1016/j.jad.2007.03.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Bopp, J. M., Miklowitz, D. J., Goodwin, G. M., Stevens, W., Rendell, J. M., & Geddes, J. R. (2010). The longitudinal course of bipolar disorder as revealed through weekly text messaging: A feasibility study. Bipolar Disorders, 12(3), 327–334. doi:10.1111/j.1399-5618.2010.00807.x [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. Thousand Oaks, CA: Sage. [Google Scholar]
- Choe, E. K. (2014). Designing self-monitoring technology to promote data capture and reflection (Doctoral dissertation). [Google Scholar]
- Choe, E. K., Lee, N. B., Lee, B., Pratt, W., and Kientz, J. A. (2014). Understanding quantified-selfers’ practices in collecting and exploring personal data. In Proceedings of the 32nd Conference on Human Factors in Computing Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Chung, C.-F., Dew, K., Cole, A., Zia, J., Fogarty, J., Kientz, J. A., and Munson, S. A. (2016). Boundary negotiating artifacts in personal informatics: Patient-provider collaboration with patient-generated data.In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. New York, NY: ACM. [Google Scholar]
- Deicken, R. F., Pegues, M. P., Anzalone, S., Feiwell, R., & Soher, B. (2003). Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. American Journal of Psychiatry, 160(5), 873–882. doi:10.1176/appi.ajp.160.5.873 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Denicoff, K. D., Leverich, G. S., Nolen, W. A., Rush, A. J., McElroy, S. L., Keck, P. E., & Frye, M. A. (2000). Validation of the prospective NIMH-Life-Chart Method (NIMH-LCM TM-p) for longitudinal assessment of bipolar illness. Psychological Medicine, 30(06), 1391–1397. doi:10.1017/S0033291799002810 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Epstein, D. A., Ping, A., Fogarty, J., & Munson, S. A. (2015). A lived informatics model of personal informatics. Proceedings of the UbiComp 2015 International Joint Conference on Pervasive and Ubiquitous ComputingNew York, NY: ACM. [Crossref], [Google Scholar]
- Frank, E., Swartz, H. A., & Boland, E. (2007). Interpersonal and social rhythm therapy: An intervention addressing rhythm dysregulation in bipolar disorder. Dialogues in Clinical Neuroscience, 9(3), 325. [PubMed], [Google Scholar]
- Frank, E., Swartz, H. A., & Kupfer, D. J. (2000). Interpersonal and social rhythm therapy: Managing the chaos of bipolar disorder. Biological Psychiatry, 48(6), 593–604. doi:10.1016/S0006-3223(00)00969-0 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Frank, E. (2007). Treating bipolar disorder: A clinician’s guide to interpersonal and social rhythm therapy. New York, NY: Guilford Press. [Google Scholar]
- Frank, E., Kupfer, D. J., Thase, M. E., Mallinger, A. G., Swartz, H. A., Fagiolini, A. M., & Thompson, W. (2005). Two-year outcomes for interpersonal and social rhythm therapy in individuals with bipolar I disorder. Archives of General Psychiatry, 62(9), 996–1004. doi:10.1001/archpsyc.62.9.996 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Frost, M., Doryab, A., Faurholt-Jepsen, M., Kessing, L. V., & Bardram, J. E. (2013). Supporting disease insight through data analysis: Refinements of the Monarca Self-Assessment System. Proceedings of the UbiComp 2013 International Joint Conference on Pervasive and Ubiquitous Computing. New York, NY: ACM. [Google Scholar]
- Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (Vol. 1). New York, NY: Oxford University Press. [Google Scholar]
- Grunerbl, A., Muaremi, A., Osmani, V., Bahle, G., Ohler, S., Troester, G., & Lukowicz, P. (2014). Smart-phone based recognition of states and state changes in bipolar disorder patients. IEEE Journal of Biomedical and Health Informatics, 19(1), 140–148. doi:10.1109/JBHI.2014.2343154 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Inder, M. L., Crowe, M. T., Joyce, P. R., Moor, S., Carter, J. D., & Luty, S. E. (2010). “I Really Don’t Know Whether it is Still There”: Ambivalent Acceptance of a Diagnosis of Bipolar Disorder. Psychiatric Quarterly, 81(2), 157–165. doi:10.1007/s11126-010-9125-3 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Inder, M. L., Crowe, M. T., Moor, S., Luty, S. E., Carter, J. D., & Joyce, P. R. (2008). “I actually don’t know who I am”: The impact of bipolar disorder on the development of self. Psychiatry, 71(2), 123–133. doi:10.1521/psyc.2008.71.2.123 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Judd, L. L., Akiskal, H. S., Schettler, P. J., Coryell, W., Endicott, J., Maser, J. D., & Keller, M. B. (2003). A prospective investigation of the natural history of the long-term weekly symptomatic status of bipolar II disorder. Archives of General Psychiatry, 60(3), 261–269. doi:10.1001/archpsyc.60.3.261 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Kahn, D. A., Sachs, G. S., Printz, D. J., Carpenter, D., Docherty, J. P., & Ross, R. (2000). Medication treatment of bipolar disorder 2000: A summary of the expert consensus guidelines. Journal of Psychiatric Practice®, 6(4), 197–211. doi:10.1097/00131746-200007000-00004 [Crossref], [PubMed], [Google Scholar]
- Kupfer, D. J., Frank, E., Grochocinski, V. J., Cluss, P. A., Houck, P. R., & Stapf, D. A. (2002). Demographic and clinical characteristics of individuals in a bipolar disorder case registry. Journal of Clinical Psychiatry, 63, 120–125. doi:10.4088/JCP.v63n0206 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Li, I., Dey, A., & Forlizzi, J. (2010). A stage-based model of personal informatics systems. Proceedings of the CHI 2010 Conference on Human Factors in Computer Systems. New York, NY: ACM. [Google Scholar]
- Licinio, J. (2005). The experience of bipolar disorder: A personal perspective on the impact of mood disorder symptoms. Molecular Psychiatry, 10(9), 827–830. doi:10.1038/sj.mp.4001717 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Lish, J. D., Dime-Meenan, S., Whybrow, P. C., R. Arlen, P., & Hirschfeld, R. M. A. (1994). The National Depressive and Manic-depressive Association (DMDA) survey of bipolar members. Journal of Affective Disorders, 31(4), 281–294. doi:10.1016/0165-0327(94)90104-X [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Lupton, D. (2013). Quantifying the body: Monitoring and measuring health in the age of mHealth technologies. Critical Public Health, 23(4), 393–403. doi:10.1080/09581596.2013.794931 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Martin, E. (2007). Bipolar expeditions:. Mania and depression in American culture. Princeton, NJ: Princeton University Press. [Google Scholar]
- Merikangas, K. R., Akiskal, H. S., Angst, J., Greenberg, P. E., Hirschfeld, R., Petukhova, M., & Kessler, R. C. (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Archives of General Psychiatry, 64(5), 543. doi:10.1001/archpsyc.64.5.543 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Michalak, E., Livingston, J. D., Hole, R., Suto, M., Hale, S., & Haddock, C. (2011). ‘It’s something that I manage but it is not who I am’: Reflections on internalized stigma in individuals with bipolar disorder. Chronic Illness, 7(3), 209–224. doi:10.1177/1742395310395959 [Crossref], [PubMed], [Google Scholar]
- Miklowitz, D. J., & Cicchetti, D. (2006). Toward a life span developmental psychopathology perspective on bipolar disorder. Development and Psychopathology, 18(04), 935–938. doi:10.1017/S0954579406060469 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Monk, T. H., Frank, E., Potts, J. M., & Kupfer, D. J. (2002). A simple way to measure daily lifestyle regularity. Journal of Sleep Research, 11(3), 183–190. doi:10.1046/j.1365-2869.2002.00300.x [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Monk, T. K., Flaherty, J. F., Frank, E., Hoskinson, K., & Kupfer, D. J. (1990). The Social Rhythm Metric: An instrument to quantify the daily rhythms of life. Journal of Nervous and Mental Disease, 178, 120–126. doi:10.1097/00005053-199002000-00007 [Crossref], [Google Scholar]
- Murnane, E. L., Cosley, D., Chang, P., Guha, S., Frank, E., Gay, G., & Matthews, M. (2016). Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: Implications for the design of technologies to manage mental health. Journal of the American Medical Informatics Association, 23(3), 477–484. doi:10.1093/jamia/ocv165 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Murray, C. J. L., & Lopez, A. D. (1996). The global burden of disease (Vol. 1). Cambridge, MA: Harvard University Press. [Google Scholar]
- Murray, G., Suto, M., Hole, R., Hale, S., Amari, E., & Michalak, E. E. (2011). Self-management strategies used by ‘high functioning’individuals with bipolar disorder: From research to clinical practice. Clinical Psychology & Psychotherapy, 18(2), 95–109. doi:10.1002/cpp.710 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Perlis, R. H., Miyahara, S., Marangell, L. B., Wisniewski, S. R., Ostacher, M., DelBello, M. P., …STEP-BD Investigators. (2004). Long-term implications of early onset in bipolar disorder: Data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biological Psychiatry, 55(9), 875–881. doi:10.1016/j.biopsych.2004.01.022 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. C. (2014). Personal tracking as lived informatics. In Proceedings of the 32nd ACM Conference on Human Factors in Computing Systems. New York, NY: ACM. [Crossref], [Google Scholar]
- Rosen, L. D., Whaling, K., Rab, S., Carrier, L. M., & Cheever, N. A. (2013). Is Facebook creating “iDisorders”? The link between clinical symptoms of psychiatric disorders and technology use, attitudes and anxiety. Computers in Human Behavior, 29(3), 1243–1254. [Google Scholar]
- Sajatovic, M., Davies, M., Bauer, M. S., McBride, L., Hays, R. W., Safavi, R., & Jenkins, J. (2005). Attitudes regarding the collaborative practice model and treatment adherence among individuals with bipolar disorder. Comprehensive Psychiatry, 46(4), 272–277. doi:10.1016/j.comppsych.2004.10.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Schärer, L. O., Hartweg, V., Valerius, G., Graf, M., Hoern, M., Biedermann, C., … Forsthoff, A. (2002). Life charts on a palmtop computer: First results of a feasibility study with an electronic diary for bipolar patients. Bipolar Disorders, 4, 107–108. doi:10.1034/j.1399-5618.4.s1.51.x [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Snyder, J., Matthews, M., Chien, J., Chang, P. F., Sun, E., Abdullah, S., & Gay, G. (2015). Moodlight: Exploring personal and social implications of ambient display of biosensor data. Proceedings of the CSCW 2015 Conference on Computer Supported Cooperative Work & Social Computing. New York, NY: ACM. [Google Scholar]
- Soreca, I., Frank, E., & Kupfer, D. J. (2009). The phenomenology of bipolar disorder: What drives the high rate of medical burden and determines long-term prognosis? Depression and Anxiety, 26(1), 73–82. doi:10.1002/da.20521 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Stone, A. A., Shiffman, S., Schwartz, J. E., Broderick, J. E., & Hufford, M. R. (2003). Patient compliance with paper and electronic diaries. Controlled Clinical Trials, 24(2), 182–199. doi:10.1016/S0197-2456(02)00320-3 [Crossref], [PubMed], [Google Scholar]
- Suppes, T., Leverich, G. S., Keck, P. E., Nolen, W. A., Denicoff, K. D., Altshuler, L. L., & Frye, M. A. (2001). The Stanley foundation bipolar treatment outcome network: II. demographics and illness characteristics of the first 261 patients. Journal of Affective Disorders, 67(1), 45–59. doi:10.1016/S0165-0327(01)00432-3 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big Data, 1(2), 85–99. doi:10.1089/big.2012.0002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Tondo, L., Isacsson, G., & Baldessarini, R. J. (2003). Suicidal behaviour in bipolar disorder. CNS Drugs, 17, 491–511. doi:10.2165/00023210-200317070-00003 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Woods, S. W. (2000). The economic burden of bipolar disease. Journal of Clinical Psychiatry, 61, 38–41. [Google Scholar]