Author(s):
- Julia Offermann-van Heek
- Wiktoria Wilkowska
- Martina Ziefle
Abstract:
An aging society characterized by rising numbers of people in need of assistance and care poses tremendous challenges for care services, hospitals, families, and the whole society. Using assisting technologies represents a potential support and relief for aged individuals, people in need of care, and their caregivers. Despite their advantages, existing concerns and barriers regarding these technologies (e.g., data security, privacy) impede the user’s acceptance. Beyond that, acceptance and the perception of technology-related benefits and barriers depend on the diversity of the future users: e.g., their cultural background as well as attitudes toward aging and care. Applying an online questionnaire, this article aims at an exemplary comparison of Turkish and German participants’ perceptions and acceptance of using lifelogging cameras as technical application. This study investigates how participants of the two countries handle and evaluate the topics aging and care, and to what extent these attitudes are connected with the perception and acceptance of assisting technologies. Findings revealed significant differences between Turkish and German participants’ attitudes, their perceptions of benefits and barriers as well as acceptance of lifelogging cameras. The results indicated that assisting technologies have to be tailored specifically to the respective users.
Documentation:
https://doi.org/10.1080/10447318.2020.1809247
References:
- Alagöz, F., Ziefle, M., Wilkowska, W., & Calero Valdez, A. (2011). Openness to accept medical technology – a cultural view. In Symposium of the Austrian HCI and Usability Engineering Group (pp. 151–170). Springer, Berlin, Heidelberg [Google Scholar]
- Arning, K., & Ziefle, M. (2015, June). “Get that camera out of my house!” conjoint measurement of preferences for video-based healthcare monitoring systems in private and public places. In International Conference on Smart Homes and Health Telematics (pp. 152–164). Springer, Cham. [Crossref], [Google Scholar]
- Beringer, R., Sixsmith, A., Campo, M., Brown, J., & McCloskey, R. (2011). The acceptance of ambient assisted living: Developing an alternate methodology to this limited research lens. In B. Abdulrazak, S. Giroux, B. Bouchard, H. Pigot, & M. Mokhtari (Eds.), Toward useful services for elderly and people with disabilities. ICOST 2011. Lecture Notes in Computer Science, vol 6719. (pp. 161–167). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21535-3_21. [Crossref], [Google Scholar]
- Biermann, H., Himmel, S., Offermann-van Heek, J., & Ziefle, M. (2018). User-specific concepts of aging – A qualitative approach on AAL-acceptance regarding ultrasonic whistles. In J. Zhou, & G. Salvendy (Eds.), Human aspects of IT for the aged population. Applications in health, assistance, and entertainment. ITAP 2018. Lecture Notes in Computer Science, vol 10927. (pp. 231–249). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-92037-5_18. [Crossref], [Google Scholar]
- Börsch-Supan, A., Bucher-Koenen, T., Coppola, M., & Lamla, B. (2015). Savings in times of demographic change: Lessons from the German experience. Journal of Economic Surveys, 29(4), 807–829. https://doi.org/10.1111/joes.12116 [Crossref], [Web of Science ®], [Google Scholar]
- Bouma, H., Fozard, J. L., Bouwhuis, D. G., & Taipale, V. (2007). Gerontechnology in perspective. Gerontechnology, 6(4), 190–216. https://doi.org/10.4017/gt.2007.06.04.003.00 [Crossref], [Google Scholar]
- Chaaraoui, A., Padilla-López, J., Ferrández-Pastor, F., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014). A vision-based system for intelligent monitoring: Human behavior analysis and privacy by context. Sensors, 14(5), 8895–8925. https://doi.org/10.3390/s140508895 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Chen, L., Yang, H., & Liu, P. (2019, August). Intelligent Robot Arm: Vision-based dynamic measurement system for industrial applications. In International Conference on Intelligent Robotics and Applications (pp. 120–130). Springer, Cham. [Crossref], [Google Scholar]
- Ćirić, I. T., Ćojbašić, Ž. M., Ristić-Durrant, D. D., Nikolić, V. D., Ćirić, M. V., Simonović, M. B., & Pavlović, I. R. (2016). Thermal vision based intelligent system for human detection and tracking in mobile robot control system. Thermal Science, 20(5), 1553–1559. https://doi.org/10.2298/TSCI16S5553C [Crossref], [Google Scholar]
- Climent-Pérez, P., Spinsante, S., Mihailidis, A., & Flórez-Revuelta, F. (2020). A review on video-based active and assisted living technologies for automated lifelogging. Expert Systems with Applications, 139(January), 112847. https://doi.org/10.1016/j.eswa.2019.112847 [Crossref], [Web of Science ®], [Google Scholar]
- CountryEconomy. (2018). Country comparison germany vs turkey. https://countryeconomy.com/countries/compare/germany/turkey. [Google Scholar]
- Demiris, G., Rantz, M. J., Aud, M. A., Marek, K. D., Tyrer, H. W., Skubic, M., & Hussam, A. A. (2004). Older adults’ attitudes towards and perceptions of smart home technologies: A pilot study. Medical Informatics and the Internet in Medicine, 29(2), 87–94. https://doi.org/10.1080/14639230410001684387 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Fekete, A. (2019). Social vulnerability change assessment: Monitoring longitudinal demographic indicators of disaster risk in germany from 2005 to 2015. Natural Hazards, 95(3), 585–614. https://doi.org/10.1007/s11069-018-3506-6 [Crossref], [Web of Science ®], [Google Scholar]
- Gall, D., Lugrin, J.-L., Wiebusch, D., & Latoschik, M. E. (2016). Remind me: An adaptive recommendation-based simulation of biographic associations. In Proceedings of the 21st International Conference on Intelligent User Interfaces (pp. 191–195). Sonoma, California, USA: ACM. https://doi.org/10.1145/2856767.2856816. [Crossref], [Google Scholar]
- Gövercin, M., Meyer, S., Schellenbach, M., Steinhagen-Thiessen, E., Weiss, B., & Haesner, M. (2016). Smartsenior@ home: Acceptance of an integrated ambient assisted living system. results of a clinical field trial in 35 households. Informatics for Health & Social Care, 41(4), 430–447. https://doi.org/10.3109/17538157.2015.1064425 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Gurrin, C., Albatal, R., Joho, H., & Ishii, K. (2014a). A privacy by design approach to lifelogging. In N. C. O’Hara & K. P. Haynes (Eds.), Digital enlightenment yearbook 2014 (pp. 49–73). IOS Press. [Google Scholar]
- Gurrin, C., Smeaton, A. F., & Doherty, A. R. (2014b). Lifelogging: Personal big data. Foundations and TrendsR in Information Retrieval, 8(1), 1–125. https://doi.org/10.1561/1500000033 [Crossref], [Web of Science ®], [Google Scholar]
- Haustein, T., Mischke, J., Schönfeld, F., & Willand, I. (2016). Older people in germany and the eu. Statistisches Bundesamt Wiesbaden, Germany, 2, 2016. https://www.bmfsfj.de/bmfsfj/meta/en/publications-en/older-people-in-germany-and-the-eu/113954 [Google Scholar]
- Hayes, T. L., Abendroth, F., Adami, A., Pavel, M., Zitzelberger, T. A., & Kaye, J. A. (2008). Unobtrusive assessment of activity patterns associated with mild cognitive impairment. Alzheimer’s & Dementia, 4(6), 395–405. https://doi.org/10.1016/j.jalz.2008.07.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations. Sage publications. [Google Scholar]
- Jalal, A., Kamal, S., & Kim, D. (2014). A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments. Sensors, 14(7), 11735–11759. https://doi.org/10.3390/s140711735 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Jaschinski, C., & Allouch, S. B. (2015). An extended view on benefits and barriers of ambient assisted living solutions. International Journal of Advanced Life Sciences, 7(1–2), 40–53. https://doi.org/10.1080/14639230410001684387 [Google Scholar]
- Lee, S. G., Trimi, S., & Kim, C. (2013). The impact of cultural differences on technology adoption. Journal of World Business, 48(1), 20–29. https://doi.org/10.1016/j.jwb.2012.06.003 [Crossref], [Web of Science ®], [Google Scholar]
- Lidynia, C., Schomakers, E.-M., & Ziefle, M. (2018). What are you waiting for? – Perceived barriers to the adoption of fitness-applications and wearables. In T. Ahram (Ed.), Advances in human factors in wearable technologies and game design. AHFE 2018. Advances in Intelligent Systems and Computing, vol 795. (pp. 41–52). Springer. https://doi.org/10.1007/978-3-319-94619-1_5. [Google Scholar]
- Mayer, B., Trommsdorff, G., Kagitcibasi, C., & Mishra, R. C. (2012). Family models of independence/interdependence and their intergenerational similarity in Germany, Turkey, and India. Family Science, 3(1), 64–74. https://doi.org/10.1080/19424620.2011.671503 [Taylor & Francis Online], [Google Scholar]
- Meditskos, G., Plans, P. M., Stavropoulos, T. G., Benois-Pineau, J., Buso, V., & Kompatsiaris, I. (2018). Multi-modal activity recognition from egocentric vision, semantic enrichment and lifelogging applications for the care of dementia. Journal of Visual Communication and Image Representation, 51(February), 169–190. https://doi.org/10.1016/j.jvcir.2018.01.009 [Crossref], [Web of Science ®], [Google Scholar]
- Morganti, L., Riva, G., Bonfiglio, S., & Gaggioli, A. (2013). Building collective memories on the web: The nostalgia bits project. International Journal of Web Based Communities, 9(1), 83–104. https://doi.org/10.1504/IJWBC.2013.051373 [Crossref], [Google Scholar]
- Nambu, M., Nakajima, K., Noshiro, M., & Tamura, T. (2005). An algorithm for the automatic detection of health conditions. IEEE Engineering in Medicine and Biology Magazine, 24(4), 38–42. https://doi.org/10.1109/MEMB.2005.1463394 [Crossref], [PubMed], [Google Scholar]
- Offermann-van Heek, J., Schomakers, E.-M., & Ziefle, M. (2019). Bare necessities? How the need for care modulates the acceptance of ambient assisted living technologies. International Journal of Medical Informatics, 127(July), 147–156. https://doi.org/10.1016/j.ijmedinf.2019.04.025 [Crossref], [Web of Science ®], [Google Scholar]
- Offermann-van Heek, J., & Ziefle, M. (2019). Nothing else matters! Trade-offs between perceived benefits and barriers of aal technology usage. Frontiers in Public Health, 7, 134. https://doi.org/10.3389/fpubh.2019.00134 [PubMed], [Google Scholar]
- Padilla-López, J., Chaaraoui, A., Gu, F., & Flórez-Revuelta, F. (2015). Visual privacy by context: Proposal and evaluation of a level-based visualisation scheme. Sensors, 15(6), 12959–12982. https://doi.org/10.3390/s150612959 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Peek, S. T., Wouters, E. J., Van Hoof, J., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. (2014). Factors influencing acceptance of technology for aging in place: A systematic review. International Journal of Medical Informatics, 83(4), 235–248. https://doi.org/10.1016/j.ijmedinf.2014.01.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Pickard, L. (2015). A growing care gap? The supply of unpaid care for older people by their adult children in England to 2032. Ageing and Society, 35(1), 96–123. https://doi.org/10.1017/S0144686X13000512 [Crossref], [Web of Science ®], [Google Scholar]
- Postawka, A., & Rudy, J. (2018). Lifelogging system based on averaged Hidden Markov models: Dangerous activities recognition for caregiver support. Computer Science, 19(3), 257. https://doi.org/10.7494/csci.2018.19.3.2855 [Crossref], [Google Scholar]
- Rashidi, P., & Mihailidis, A. (2012). A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579–590. https://doi.org/10.1109/JBHI.2012.2234129 [Crossref], [Web of Science ®], [Google Scholar]
- Schoeppe, S., Alley, S., Van Lippevelde, W., Bray, N. A., Williams, S. L., Duncan, M. J., & Vandelanotte, C. (2016). Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 127. https://doi.org/10.1186/s12966-016-0454-y [Crossref], [PubMed], [Google Scholar]
- Schomakers, E.-M., Offermann-van Heek, J., & Ziefle, M. (2018). Attitudes towards aging and the acceptance of ICT for aging in place. In J. Zhou & G. Salvendy (Eds.), Human aspects of it for the aged population. Acceptance, communication and participation. ITAP 2018. Lecture Notes in Computer Science, vol 10926. (pp. 149–169). Springer. https://doi.org/10.1007/978-3-319-92034-4_12. [Crossref], [Google Scholar]
- Selke, S. (2016). Lifelogging: Digital self-tracking and Lifelogging-between disruptive technology and cultural transformation. Springer. [Crossref], [Google Scholar]
- Shi, G., Chan, C. S., Li, W. J., Leung, K.-S., Zou, Y., & Jin, Y. (2009). Mobile human airbag system for fall protection using mems sensors and embedded svm classifier. IEEE Sensors Journal, 9(5), 495–503. https://doi.org/10.1109/JSEN.2008.2012212 [Crossref], [Web of Science ®], [Google Scholar]
- Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-computer Studies, 64(2), 53–78. https://doi.org/10.1016/j.ijhcs.2005.04.013 [Crossref], [Web of Science ®], [Google Scholar]
- Taras, V., Steel, P., & Kirkman, B. L. (2012). Improving national cultural indices using a longitudinal meta-analysis of Hofstede’s dimensions. Journal of World Business, 47(3), 329–341 https://doi.org/10.1016/j.jwb.2011.05.001 [Crossref], [Web of Science ®], [Google Scholar]
- Wang, L., Gu, T., Tao, X., & Lu, J. (2009). Sensor-based human activity recognition in a multi-user scenario. In M. Tscheligi et al. (Eds.), European Conference on Ambient Intelligence (pp. 78–87). Springer. https://doi.org/10.1007/978-3-642-05408-2_10 [Crossref], [Google Scholar]
- Wilkowska, W., Offermann-van Heek, J., Brauner, P., & Ziefle, M. (2019). Wind of change? Attitudes towards aging and use of medical technology. In Proceeding of the 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health – Volume 1(ICT4AWE 2019), Crete, Greece, 80–91. https://doi.org/10.5220/0007693000800091. [Crossref], [Google Scholar]
- Wilkowska, W., & Ziefle, M. (2013). User diversity as a challenge for the integration of medical technology into future smart home environments. In M. Ziefle & C. Rocker (Eds.), Human-centered design of ehealth technologies: Concepts, methodologies, tools, and applications (pp. 553–582). IGI Global. https://doi.org/10.4018/978-1-4666-2770-3.ch028 [Crossref], [Google Scholar]
- Wilkowska, W., Ziefle, M., & Alagöz, F. (2012). How user diversity and country of origin impact the readiness to adopt e-health technologies: An intercultural comparison. Work: A Journal of Prevention, Assessment and Rehabilitation, 41(Suppl. 1), 2072–2080. https://doi.org/10.3233/WOR-2012-0433-2072 [Google Scholar]