Author(s):

Paul Dulaud

Ines Di Loreto

Denis Mottet

Abstract:

Since the emergence of the quantified self movement, users aim at health behavior change, but only those who are sufficiently motivated and competent with the tools will succeed. Our literature review shows that theoretical models for quantified self exist but they are too abstract to guide the design of effective user support systems. Here, we propose principles linking theory and implementation to arrive at a hierarchical model for an adaptable and personalized self-quantification system for physical activity support. We show that such a modeling approach should include a multi-factors user model (activity, context, personality, motivation), a hierarchy of multiple time scales (week, day, hour), and a multi-criteria decision analysis (user activity preference, user measured activity, external parameters). This theoretical groundwork, which should facilitate the design of more effective solutions, has now to be validated by further empirical research.

Documentation:

https://doi.org/10.3390/ijerph17249350

References:

  1. Wolf, G.I.; De Groot, M. A Conceptual Framework for Personal Science. Front. Comput. Sci. 2020, 2, 21. [Google Scholar] [CrossRef]
  2. Quantified Self. Quantified Self Blog. 2020. Available online: https://quantifiedself.com/ (accessed on 31 January 2020).
  3. Motti, V.G.; Caine, K. Human Factors Considerations in the Design of Wearable Devices. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2014, 58, 1820–1824. [Google Scholar] [CrossRef]
  4. Khakurel, J. Enhancing the Adoption of Quantified Self-Tracking Devices; Lappeenranta University of Technology: Lappeenranta, Finland, 2018. [Google Scholar]
  5. Vizer, L.M.; Eschler, J.; Koo, B.M.; Ralston, J.; Pratt, W.; Munson, S. “It’s Not Just Technology, It’s People”: Constructing a Conceptual Model of Shared Health Informatics for Tracking in Chronic Illness Management. J. Med. Internet Res. 2019, 21. [Google Scholar] [CrossRef] [PubMed]
  6. Li, I.; Dey, A.; Forlizzi, J. A stage-based model of personal informatics systems. In Proceedings of the 28th International Conference on Human Factors in Computing Systems-CHI ’10, Atlanta, GA, USA, 10–15 April 2010. [Google Scholar] [CrossRef]
  7. Li, I.; Dey, A.K.; Forlizzi, J. Understanding my data, myself. In Proceedings of the 13th International Conference on Ubiquitous Computing-UbiComp’11, Beijing, China, 17–21 September 2011. [Google Scholar] [CrossRef]
  8. Choe, E.K.; Lee, N.B.; Lee, B.; Pratt, W.; Kientz, J.A. Understanding Quantified-Selfers’ Practices in Collecting and Exploring Personal Data. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014. [Google Scholar] [CrossRef]
  9. Martin, J.C.; Clavel, C. Tailored, Multimodal and Opportune Interactions on a Wearable Sport Coach: The WE-nner Framework. In Global Thoughts, Local Designs; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 24–32. [Google Scholar] [CrossRef]
  10. Wolf, G. Know Thyself: Tracking Every Facet of Life, From Sleep To Mood To Pain. WIRED 2009, 17, 95. [Google Scholar]
  11. Yau, N.; Schneider, J. Self-Surveillance. Bull. Am. Soc. Inf. Sci. Technol. 2009, 35, 24–30. [Google Scholar] [CrossRef]
  12. Lupton, D. Understanding the Human Machine [commentary]. IEEE Technol. Soc. Mag. 2013, 32, 25–30. [Google Scholar] [CrossRef]
  13. Goodman, N.G. The Autobiography of Benjamin Franklin; University of Pennsylvania Press: Pennsylvania, PA, USA, 2005. [Google Scholar] [CrossRef]
  14. Dymaxion Chronofile-Wikipedia, 2020. Available online: https://en.wikipedia.org/wiki/Dymaxion_Chronofile (accessed on 10 February 2020).
  15. Driver, D. Designing with Data: Nicholas Felton|Create, 2020. Available online: http://feltron.com/ (accessed on 12 February 2020).
  16. Kopp, J. Self-Monitoring: A Literature Review of Research and Practice. Soc. Work Res. Abstr. 1988, 24, 8–20. [Google Scholar] [CrossRef]
  17. Korotitsch, W.J.; Nelson-Gray, R.O. An Overview of Self-Monitoring Research in Assessment and Treatment. Psychol. Assess. 1999, 11, 415–425. [Google Scholar] [CrossRef]
  18. Klasnja, P.; Pratt, W. Healthcare in the Pocket: Mapping the Space of Mobile-Phone Health Interventions. J. Biomed. Inform. 2012, 45, 184–198. [Google Scholar] [CrossRef]
  19. Almalki, M.; Gray, K.; Sanchez, F.M. The Use of Self-Quantification Systems for Personal Health Information: Big Data Management Activities and Prospects. Health Inf. Sci. Syst. 2015, 3, S1. [Google Scholar] [CrossRef]
  20. Ali, A.A.; Hossain, S.M.; Hovsepian, K.; Rahman, M.M.; Plarre, K.; Kumar, S. mPuff: Automated detection of cigarette smoking puffs from respiration measurements. In Proceedings of the 2012 ACM/IEEE 11th International Conference on Information Processing in Sensor Networks (IPSN), Beijing, China, 16–19 April 2012. [Google Scholar] [CrossRef]
  21. Holman, H.; Lorig, K. Patient Self-Management: A Key To Effectiveness and Efficiency in Care of Chronic Disease. Public Health Rep. 2004, 119, 239–243. [Google Scholar] [CrossRef] [PubMed]
  22. Fox, S.; Duggan, M. Tracking for Health; Pew Research Center’s Internet & American Life Project: Washington, DC, USA, 2013. [Google Scholar]
  23. Epstein, D.A.; Caraway, M.; Johnston, C.; Ping, A.; Fogarty, J.; Munson, S.A. Beyond Abandonment to Next Steps. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016. [Google Scholar] [CrossRef]
  24. Murnane, E.L.; Walker, T.G.; Tench, B.; Voida, S.; Snyder, J. Personal Informatics in Interpersonal Contexts. Proc. ACM Hum. Comput. Interact. 2018, 2, 1–27. [Google Scholar] [CrossRef]
  25. Swan, M. Emerging Patient-Driven Health Care Models: An Examination of Health Social Networks, Consumer Personalized Medicine and Quantified Self-Tracking. Int. J. Environ. Res. Public Health 2009, 6, 492–525. [Google Scholar] [CrossRef] [PubMed]
  26. Figueiredo, M.C.; Caldeira, C.; Reynolds, T.L.; Victory, S.; Zheng, K.; Chen, Y. Self-Tracking for Fertility Care. Proc. ACM Hum. Comput. Interact. 2017, 1, 1–21. [Google Scholar] [CrossRef]
  27. Rooksby, J.; Rost, M.; Morrison, A.; Chalmers, M.C. Personal tracking as lived informatics. In Proceedings of the 32nd annual ACM Conference on Human Factors in Computing Systems-CHI’14, Toronto, ON, Canada, 26 April–1 May 2014. [Google Scholar] [CrossRef]
  28. Valdez, R.S.; Brennan, P.F. Exploring Patients’ Health Information Communication Practices with Social Network Members As a Foundation for Consumer Health It Design. Int. J. Med. Inform. 2015, 84, 363–374. [Google Scholar] [CrossRef]
  29. Mishra, S.R.; Miller, A.D.; Haldar, S.; Khelifi, M.; Eschler, J.; Elera, R.G.; Pollack, A.H.; Pratt, W. Supporting Collaborative Health Tracking in the Hospital. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems-CHI’18, Montreal, QC, Canada, 21–26 April 2018. [Google Scholar] [CrossRef]
  30. Epstein, D.A.; Ping, A.; Fogarty, J.; Munson, S.A. A lived informatics model of personal informatics. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing-UbiComp’15, Osaka, Japan, 7–11 September 2015. [Google Scholar] [CrossRef]
  31. Consolvo, S.; McDonald, D.W.; Landay, J.A. Theory-driven design strategies for technologies that support behavior change in everyday life. In Proceedings of the 27th International Conference on Human Factors in Computing Systems-CHI 09, Boston, MA, USA, 4–9 April 2009. [Google Scholar] [CrossRef]
  32. DiClemente, C.C.; Marinilli, A.S.; Singh, M.; Bellino, L.E. The Role of Feedback in the Process of Health Behavior Change. Am. J. Health Behav. 2001, 25, 217–227. [Google Scholar] [CrossRef]
  33. Froehlich, J.; Dillahunt, T.; Klasnja, P.; Mankoff, J.; Consolvo, S.; Harrison, B.; Landay, J.A. UbiGreen: Investigating a mobile tool for tracking and supporting green transportation habits. In Proceedings of the Sigchi Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009; pp. 1043–1052. [Google Scholar]
  34. Locke, E.A.; Latham, G.P. Building a Practically Useful Theory of Goal Setting and Task Motivation: A 35-year Odyssey. Am. Psychol. 2002, 57, 705–717. [Google Scholar] [CrossRef]
  35. Prochaska, J.O.; DiClemente, C.C.; Norcross, J.C. In Search of How People Change: Applications To Addictive Behaviors. Am. Psychol. 1992, 47, 1102–1114. [Google Scholar] [CrossRef]
  36. Khan, S. Erving Goffman, the Presentation of Self in Everyday Life (1959). Public Cult. 2020, 32, 397–404. [Google Scholar] [CrossRef]
  37. Festinger, L. A Theory of Cognitive Dissonance; Stanford University Press: Palo Alto, CA, USA, 1957; Volume 2. [Google Scholar]
  38. Lin, J.J.; Mamykina, L.; Lindtner, S.; Delajoux, G.; Strub, H.B. Fish’n’Steps: Encouraging Physical Activity with an Interactive Computer Game. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; pp. 261–278. [Google Scholar] [CrossRef]
  39. Jafarinaimi, N.; Forlizzi, J.; Hurst, A.; Zimmerman, J. Breakaway: An ambient display designed to change human behavior. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 22–27 April 2005; pp. 1945–1948. [Google Scholar]
  40. Berlin, J.E.; Storti, K.L.; Brach, J.S. Using Activity Monitors To Measure Physical Activity in Free-Living Conditions. Phys. Ther. 2006, 86, 1137–1145. [Google Scholar] [CrossRef]
  41. Tudorlocke, C.; Burkett, L.; Reis, J.; Ainsworth, B.; Macera, C.; Wilson, D. How Many Days of Pedometer Monitoring Predict Weekly Physical Activity in Adults? Prev. Med. 2005, 40, 293–298. [Google Scholar] [CrossRef] [PubMed]
  42. Scheers, T.; Philippaerts, R.; Lefevre, J. Variability in Physical Activity Patterns As Measured by the Sensewear Armband: How Many Days Are Needed? Eur. J. Appl. Physiol. 2011, 112, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
  43. Hart, T.L.; Swartz, A.M.; Cashin, S.E.; Strath, S.J. How Many Days of Monitoring Predict Physical Activity and Sedentary Behaviour in Older Adults? Int. J. Behav. Nutr. Phys. Act. 2011, 8, 62. [Google Scholar] [CrossRef] [PubMed]
  44. Chan, C.B.; Ryan, D.A.; Tudor-Locke, C. Relationship Between Objective Measures of Physical Activity and Weather: A Longitudinal Study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 21. [Google Scholar] [CrossRef] [PubMed]
  45. Nguyen, H.; Ruiz, C.; Wilson, V.; Strong, D.; Djamasbi, S. Using personality traits and chronotype to support personalization and feedback in a sleep health behavior change support system. In Proceedings of the 51st Hawaii International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018. [Google Scholar]
  46. De Vries, R.A.J.; Truong, K.P.; Zaga, C.; Li, J.; Evers, V. A Word of Advice: How To Tailor Motivational Text Messages Based on Behavior Change Theory To Personality and Gender. Pers. Ubiquitous Comput. 2017, 21, 675–687. [Google Scholar] [CrossRef]
  47. Yamashita, Y.; Seki, N.; Umeda, K.; Tanabe, N.; Shinoda, K.; Konishi, I.; Sekiya, A.; Sekii, A.; Ohta, T. Relationship Between Exercise Adherence and Personality Characteristics in Persons Experienced in the Medical Fitness Program. [Nihon Koshu Eisei Zasshi] Jpn. J. Public Health 2017, 64, 664–671. [Google Scholar]
  48. Axelsson, M.; Lötvall, J.; Cliffordson, C.; Lundgren, J.; Brink, E. Self-Efficacy and Adherence As Mediating Factors Between Personality Traits and Health-Related Quality of Life. Qual. Life Res. 2012, 22, 567–575. [Google Scholar] [CrossRef]
  49. Ryan, R.M.; Patrick, H.; Deci, E.L.; Williams, G.C. Facilitating health behaviour change and its maintenance: Interventions based on Self-Determination Theory. Eur. Health Psychol. 2008, 10, 2–5. [Google Scholar]
  50. Kelly, R.B.; Zyzanski, S.J.; Alemagno, S.A. Prediction of Motivation and Behavior Change Following Health Promotion: Role of Health Beliefs, Social Support, and Self-Efficacy. Soc. Sci. Med. 1991, 32, 311–320. [Google Scholar] [CrossRef]
  51. Frost, J.; Smith, B.K. Visualizing health: Imagery in diabetes education. In Proceedings of the 2003 Conference on Designing for User Experiences, San Francisco, CA, USA, 6–7 June 2003; pp. 1–14. [Google Scholar]
  52. Akizuki, K.; Ohashi, Y. Measurement of Functional Task Difficulty During Motor Learning: What Level of Difficulty Corresponds To the Optimal Challenge Point? Hum. Mov. Sci. 2015, 43, 107–117. [Google Scholar] [CrossRef]
  53. Wrosch, C.; Sabiston, C.M. Goal Adjustment, Physical and Sedentary Activity, and Well-Being and Health Among Breast Cancer Survivors. Psycho-Oncology 2012, 22, 581–589. [Google Scholar] [CrossRef] [PubMed]
  54. Mandigo, J.; Holt, N.L.; Mandigo, J. The Inclusion of Optimal Challenge in Teaching Games for Understanding. Phys. Health Educ. J. 2000, 66, 14–21. [Google Scholar]
  55. Pesce, C.; Crova, C.; Marchetti, R.; Struzzolino, I.; Masci, I.; Vannozzi, G.; Forte, R. Searching for Cognitively Optimal Challenge Point in Physical Activity for Children With Typical and Atypical Motor Development. Ment. Health Phys. Act. 2013, 6, 172–180. [Google Scholar] [CrossRef]
  56. Onla-or, S.; Winstein, C.J. Determining the Optimal Challenge Point for Motor Skill Learning in Adults With Moderately Severe Parkinson’s Disease. Neurorehabilit. Neural Repair 2007, 22, 385–395. [Google Scholar] [CrossRef]
  57. Rabbi, M.; Aung, M.H.; Zhang, M.; Choudhury, T. MyBehavior. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing-UbiComp’15, Osaka, Japan, 7–11 September 2015. [Google Scholar] [CrossRef]
  58. Dunn, E.E.; Robertson-Wilson, J. Behavior Change Techniques and Physical Activity Using the Fitbit Flex®. Int. J. Exerc. Sci. 2018, 11, 7. [Google Scholar]
  59. Richard, M.; Christina, M.F.; Deborah, L.S.; Rubio, N.; Kennon, M.S. Intrinsic Motivation and Exercise Adherence. Int. J. Sport Psychol. 1997, 28, 335–354. [Google Scholar]
  60. John, O.P.; Donahue, E.M.; Kentle, R.L. Big Five Inventory. J. Personal. Soc. Psychol. 1991. [Google Scholar] [CrossRef]
  61. Axelsson, M.; Brink, E.; Lundgren, J.; Lötvall, J. The Influence of Personality Traits on Reported Adherence To Medication in Individuals With Chronic Disease: An Epidemiological Study in West Sweden. PLoS ONE 2011, 6, e18241. [Google Scholar] [CrossRef]
  62. Gernigon, C.; Vallacher, R.R.; Nowak, A.; Conroy, D.E. Rethinking Approach and Avoidance in Achievement Contexts: The Perspective of Dynamical Systems. Rev. Gen. Psychol. 2015, 19, 443–457. [Google Scholar] [CrossRef]
  63. Teboul, A.; Klosek, C.; Montiny, C.; Gernigon, C. Development and Validation of the Approach-Avoidance System Questionnaire (AASQ). Front. Psychol. 2019, 10, 2531. [Google Scholar] [CrossRef]
  64. Seligman, C.; Darley, J.M. Feedback As a Means of Decreasing Residential Energy Consumption. J. Appl. Psychol. 1977, 62, 363–368. [Google Scholar] [CrossRef]
  65. Pandey, S.; Voorsluys, W.; Niu, S.; Khandoker, A.; Buyya, R. An Autonomic Cloud Environment for Hosting Ecg Data Analysis Services. Future Gener. Comput. Syst. 2012, 28, 147–154. [Google Scholar] [CrossRef]
  66. Chow, R.; Golle, P.; Jakobsson, M.; Shi, E.; Staddon, J.; Masuoka, R.; Molina, J. Controlling data in the cloud: Outsourcing computation without outsourcing control. In Proceedings of the 2009 ACM Workshop on Cloud Computing Security; Association for Computing Machinery: New York, NY, USA, 2009; pp. 85–90. [Google Scholar]
  67. Thilakanathan, D.; Chen, S.; Nepal, S.; Calvo, R.; Alem, L. A Platform for Secure Monitoring and Sharing of Generic Health Data in the Cloud. Future Gener. Comput. Syst. 2014, 35, 102–113. [Google Scholar] [CrossRef]
  68. Patil, S.; Lu, H.; Saunders, C.L.; Potoglou, D.; Robinson, N. Public Preferences for Electronic Health Data Storage, Access, and Sharing-Evidence From a Pan-European Survey. J. Am. Med. Inform. Assoc. 2016, 23, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
  69. Yuan, B.; Li, J. The Policy Effect of the General Data Protection Regulation (GDPR) on the Digital Public Health Sector in the European Union: An Empirical Investigation. Int. J. Environ. Res. Public Health 2019, 16, 1070. [Google Scholar] [CrossRef] [PubMed]
  70. McCrae, R.R. The Five-Factor Model of Personality Traits: Consensus and Controversy. Camb. Handb. Personal. Psychol. 2009, 148–161. [Google Scholar] [CrossRef]
  71. Cayanan, E.A.; Bartlett, D.J.; Chapman, J.L.; Hoyos, C.M.; Phillips, C.L.; Grunstein, R.R. A Review of Psychosocial Factors and Personality in the Treatment of Obstructive Sleep Apnoea. Eur. Respir. Rev. 2019, 28, 190005. [Google Scholar] [CrossRef]
  72. Strickhouser, J.E.; Zell, E.; Krizan, Z. Does Personality Predict Health and Well-Being? A Metasynthesis. Health Psychol. 2017, 36, 797–810. [Google Scholar] [CrossRef]
  73. Prochaska, J.O.; Velicer, W.F. The Transtheoretical Model of Health Behavior Change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef]
  74. Bandura, A.; Freeman, W.; Lightsey, R. Self-Efficacy: The Exercise of Control; W H Freeman: New York, NY, USA, 1999. [Google Scholar]