Author(s):

  • Craig S. McLachlan
  • Hang Truong

Abstract:

The COVID-19 pandemic has resulted in employees being at risk of significant stress. There is increased interest by employers to offer employees stress monitoring via third party commercial sensor-based devices. These devices assess physiological parameters such as heart rate variability and are marketed as an indirect measure of the cardiac autonomic nervous system. Stress is correlated with an increase in sympathetic nervous activity that may be associated with an acute or chronic stress response. Interestingly, recent studies have shown that individuals affected with COVID will have some residual autonomic dysfunction that will likely render it difficult to track both stress and stress reduction using heart rate variability. The aims of the present study are to explore web and blog information using five operational commercial technology solution platforms that offer heart rate variability for stress detection. Across five platforms we found a number that combined HRV with other biometrics to assess stress. The type of stress being measured was not defined. Importantly, no company considered cardiac autonomic dysfunction because of post-COVID infection and only one other company mentioned other factors affecting the cardiac autonomic nervous system and how this may impact HRV accuracy. All companies suggested they could only assess associations with stress and were careful not to claim HRV could diagnosis stress. We recommend that managers think carefully about whether HRV is accurate enough for their employees to manage their stress during COVID.

Documentation:

https://doi.org/10.3390/jcdd10040141

References:
  1. Ingram, C.; Downey, V.; Roe, M.; Chen, Y.; Archibald, M.; Kallas, K.A.; Kumar, J.; Naughton, P.; Uteh, C.O.; Rojas-Chaves, A.; et al. COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7847. [Google Scholar] [CrossRef] [PubMed]
  2. Bisaccia, G.; Ricci, F.; Recce, V.; Serio, A.; Iannetti, G.; Chahal, A.A.; Ståhlberg, M.; Khanji, M.Y.; Fedorowski, A.; Gallina, S. Post-acute sequelae of COVID-19 and cardiovascular autonomic dysfunction: What do we know? J. Cardiovasc. Dev. Dis. 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed]
  3. Kurtoğlu, E.; Afsin, A.; Aktaş, İ.; Aktürk, E.; Kutlusoy, E.; Çağaşar, Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann. Noninvasive Electrocardiol. 2022, 27, e12916. [Google Scholar] [CrossRef]
  4. Asarcikli, L.D.; Hayiroglu, M.İ.; Osken, A.; Keskin, K.; Kolak, Z.; Aksu, T. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 2022, 63, 715–721. [Google Scholar] [CrossRef]
  5. Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: A systematic review. Sensors 2021, 21, 3461. [Google Scholar] [CrossRef]
  6. Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef]
  7. Yu, J.; Park, J.; Hyun, S.S. Impacts of the COVID-19 pandemic on employees’ work stress, well-being, mental health, organizational citizenship behavior, and employee-customer identification. J. Hosp. Mark. Manag. 2021, 30, 529–548. [Google Scholar] [CrossRef]
  8. Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
  9. White, D.W.; Raven, P.B. Autonomic Neural Control of Heart Rate during Dynamic Exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef]
  10. Matthews, S.; Jelinek, H.; Vafaeiafraz, S.; McLachlan, C.S. Heart rate stability and decreased parasympathetic heart rate variability in healthy young adults during perceived stress. Int. J. Cardiol. 2012, 156, 337–338. [Google Scholar] [CrossRef]
  11. Papaioannou, V.E.; Verkerk, A.O.; Amin, A.S.; de Bakker, J.M. Intracardiac origin of heart rate variability, pacemaker funny current and their possible association with critical illness. Curr. Cardiol. Rev. 2013, 9, 82–96. [Google Scholar] [CrossRef] [PubMed]
  12. McLachlan, C.S.; Ocsan, R.; Spence, I.; Hambly, B.; Matthews, S.; Wang, L.; Jelinek, H.F. Increased total heart rate variability and enhanced cardiac vagal autonomic activity in healthy humans with sinus bradycardia. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2010; Volume 23, pp. 368–370. [Google Scholar]
  13. McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
  14. Fatisson, J.; Oswald, V.; Lalonde, F. Influence diagram of physiological and environmental factors affecting heart rate variability: An extended literature overview. Heart Int. 2016, 11, e32–e40. [Google Scholar] [CrossRef]
  15. Stauss, H.M. Heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R927–R931. [Google Scholar] [CrossRef] [PubMed]
  16. Lourel, M.; Ford, M.T.; Gamassou, C.E.; Guéguen, N.; Hartmann, A. Negative and positive spillover between work and home: Relationship to perceived stress and job satisfaction. J. Manag. Psychol. 2009, 24, 438–449. [Google Scholar] [CrossRef]
  17. Galanti, T.; Guidetti, G.; Mazzei, E.; Zappalà, S.; Toscano, F. Work from Home during the COVID-19 Outbreak: The Impact on Employees’ Remote Work Productivity, Engagement, and Stress. J. Occup. Environ. Med. 2021, 63, e426–e432. [Google Scholar] [CrossRef]
  18. Chinoy, E.D.; Cuellar, J.A.; Huwa, K.E.; Jameson, J.T.; Watson, C.H.; Bessman, S.C.; Hirsch, D.A.; Cooper, A.D.; Drummond, S.P.A.; Markwald, R.R. Performance of seven consumer sleep-tracking devices compared with polysomnography. Sleep 2021, 44, zsaa291. [Google Scholar] [CrossRef]
  19. Medic, G.; Wille, M.; Hemels, M.E. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef]
  20. Heikkilä, P.; Honka, A.; Mach, S.; Schmalfuß, F.; Kaasinen, E.; Väänänen, K. Quantified factory worker-expert evaluation and ethical considerations of wearable self-tracking devices. In Proceedings of the 22nd International Academic Mindtrek Conference, Tampere, Finland, 10–11 October 2018; pp. 202–211. [Google Scholar]
  21. Saleem, F.; Malik, M.I.; Qureshi, S.S. Work stress hampering employee performance during COVID-19: Is safety culture needed? Front. Psychol. 2021, 12, 655839. [Google Scholar] [CrossRef] [PubMed]
  22. O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long Covid among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef]
  23. Huerne, K.; Filion, K.B.; Grad, R.; Ernst, P.; Gershon, A.S.; Eisenberg, M.J. Epidemiological and clinical perspectives of long COVID syndrome. Am. J. Med. Open 2023, 9, 100033. [Google Scholar] [CrossRef] [PubMed]
  24. Iqbal, S.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in healthcare wearable devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
  25. Martinez, G.J.; Grover, T.; Mattingly, S.M.; Mark, G.; D’Mello, S.; Aledavood, T.; Akbar, F.; Robles-Granda, P.; Striegel, A. Alignment Between Heart Rate Variability from Fitness Trackers and Perceived Stress: Perspectives from a Large-Scale In Situ Longitudinal Study of Information Workers. JMIR Hum. Factors 2022, 9, e33754. [Google Scholar] [CrossRef] [PubMed]
  26. Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.-L. Toward soft real-time stress detection using wrist-worn devices for human workspaces. Soft Comput. 2021, 25, 2793–2820. [Google Scholar] [CrossRef]
  27. Stute, N.L.; Stickford, J.L.; Province, V.M.; Augenreich, M.A.; Ratchford, S.M.; Stickford, A.S.L. COVID-19 is getting on our nerves: Sympathetic neural activity and haemodynamics in young adults recovering from SARS-CoV-2. J. Physiol. 2021, 599, 4269–4285. [Google Scholar] [CrossRef] [PubMed]
  28. Brinkmann, A.E.; Press, S.A.; Helmert, E.; Hautzinger, M.; Khazan, I.; Vagedes, J. Comparing Effectiveness of HRV-Biofeedback and Mindfulness for Workplace Stress Reduction: A Randomized Controlled Trial. Appl. Psychophysiol. Biofeedback 2020, 45, 307–322. [Google Scholar] [CrossRef]
  29. Maslach, C.; Leiter, M.P. Understanding the burnout experience: Recent research and its implications for psychiatry. World Psychiatry 2016, 15, 103–111. [Google Scholar] [CrossRef]
  30. Wheeler, H.H. Nurse occupational stress research. 2: Definition and conceptualization. Br. J. Nurs. 1997, 6, 710–713. [Google Scholar] [CrossRef]
  31. Palagini, L.; Moretto, U.; Novi, M.; Masci, I.; Caruso, D.; Drake, C.L.; Riemann, D. Lack of Resilience Is Related to Stress-Related Sleep Reactivity, Hyperarousal, and Emotion Dysregulation in Insomnia Disorder. J. Clin. Sleep Med. 2018, 14, 759–766. [Google Scholar] [CrossRef]
  32. Semyachkina-Glushkovskaya, O.; Mamedova, A.; Vinnik, V.; Klimova, M.; Saranceva, E.; Ageev, V.; Yu, T.; Zhu, D.; Penzel, T.; Kurths, J. Brain Mechanisms of COVID-19-Sleep Disorders. Int. J. Mol. Sci. 2021, 22, 6917. [Google Scholar] [CrossRef]
  33. El Sayed, S.; Gomaa, S.; Shokry, D.; Kabil, A.; Eissa, A. Sleep in post-COVID-19 recovery period and its impact on different domains of quality of life. Egypt J. Neurol. Psychiatr. Neurosurg. 2021, 57, 172. [Google Scholar] [CrossRef] [PubMed]
  34. Huang, M.; Bliwise, D.L.; Shah, A.; Johnson, D.A.; Clifford, G.D.; Hall, M.H.; Krafty, R.T.; Goldberg, J.; Sloan, R.; Ko, Y.A.; et al. The temporal relationships between sleep disturbance and autonomic dysregulation: A co-twin control study. Int. J. Cardiol. 2022, 362, 176–182. [Google Scholar] [CrossRef] [PubMed]
  35. Hsu, H.C.; Lee, H.F.; Lin, M.H. Exploring the Association between Sleep Quality and Heart Rate Variability among Female Nurses. Int. J. Environ. Res. Public Health 2021, 18, 5551. [Google Scholar] [CrossRef]
  36. Linden, W.L.; Earle, T.L.; Gerin, W.; Christenfeld, N. Physiological stress reactivity and recovery: Conceptual siblings separated at birth? J. Psychosom. Res. 1997, 42, 117–135. [Google Scholar] [CrossRef] [PubMed]
  37. Hoareau, V.; Godin, C.; Dutheil, F.; Trousselard, M. The Effect of Stress Management Programs on Physiological and Psychological Components of Stress: The Influence of Baseline Physiological State. Appl. Psychophysiol. Biofeedback 2021, 46, 243–250. [Google Scholar] [CrossRef] [PubMed]
  38. Boluarte-Carbajal, A.; Navarro-Flores, A.; Villarreal-Zegarra, D. Explanatory Model of Perceived Stress in the General Population: A Cross-Sectional Study in Peru during the COVID-19 Context. Front. Psychol. 2021, 12, 673945. [Google Scholar] [CrossRef] [PubMed]
  39. Keller, A.; Litzelman, K.; Wisk, L.E.; Maddox, T.; Cheng, E.R.; Creswell, P.D.; Witt, W.P. Does the perception that stress affects health matter? The association with health and mortality. Health Psychol. 2012, 31, 677–684. [Google Scholar] [CrossRef] [PubMed]
  40. Ramos-Cejudo, J.; Salguero, J.M. Negative metacognitive beliefs moderate the influence of perceived stress and anxiety in long-term anxiety. Psychiatry Res. 2017, 250, 25–29. [Google Scholar] [CrossRef]
  41. Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA-a scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
  42. Cision PR Newswire. Total Brain Introduces Heart Rate Variability Measurement and Stress Management Tools. Available online: https://www.prnewswire.com/news-releases/total-brain-introduces-heart-rate-variability-measurement-and-stress-management-tools-301403634.html (accessed on 22 August 2022).
  43. Venkatraman, S.; Pantelopoulos, A.U.S. Method and apparatus for providing biofeedback during meditation exercise. Patent No. 10,188,345, 29 January 2019. [Google Scholar]
  44. Wareable. Fitbit Smartwatches Could Detect Stress before It Ruins Your Day (wareable.com). Available online: https://www.wareable.com/fitbit/fitbit-real-time-stress-alerts-patent-details-8720 (accessed on 24 August 2022).
  45. Wareable. Fitbit Stress Score Explained: How Stress Tracking and Management Works (wareable.com). Available online: https://www.wareable.com/fitbit/fitbit-brings-stress-score-to-all-devices-8394 (accessed on 24 August 2022).
  46. The Fitbit of Corporate America:’ ‘Pulse’ App Addresses Workplace Stress—The American Institute of Stress. Available online: https://www.stress.org/the-fitbit-of-corporate-america-pulse-app-addresses-workplace-stress (accessed on 24 August 2022).
  47. AIO Sleeve. 6 Reasons Why the AIO Smart Sleeve Is the BEST HRV Tracker in 2022 (komodotec.com). Available online: https://komodotec.com/best-hrv-tracker/ (accessed on 24 August 2022).
  48. AIO Sleeve. Turn Your Gym into Smart Gym. Available online: https://komodotec.com/healthbar/ (accessed on 24 August 2022).
  49. Applicant Fitbit. Stress determination and management techniques. Patent No. WO2022031671A1, 10 February 2022. [Google Scholar]
  50. Berryhill, S.; Morton, C.J.; Dean, A.; Berryhill, A.; Provencio-Dean, N.; Patel, S.I.; Estep, L.; Combs, D.; Mashaqi, S.; Gerald, L.B.; et al. Effect of wearables on sleep in healthy individuals: A randomized crossover trial and validation study. J. Clin. Sleep Med. 2020, 16, 775–783. [Google Scholar] [CrossRef]
  51. Bellenger, C.R.; Miller, D.J.; Halson, S.L.; Roach, G.D.; Sargent, C. Wrist-Based Photoplethysmography Assessment of Heart Rate and Heart Rate Variability: Validation of WHOOP. Sensors 2021, 21, 3571. [Google Scholar] [CrossRef] [PubMed]
  52. WHOOP Unite. Re-Imagine Workplace Health and Performance. Available online: https://www.prnewswire.com/news-releases/whoop-launches-whoop-unite-an-industry-leading-health-and-performance-solution-for-organizations-301559973.html (accessed on 24 August 2022).
  53. Pietilä, J.; Helander, E.; Korhonen, I.; Myllymäki, T.; Kujala, U.M.; Lindholm, H. Acute Effect of Alcohol Intake on Cardiovascular Autonomic Regulation during the First Hours of Sleep in a Large Real-World Sample of Finnish Employees: Observational Study. JMIR Ment. Health 2018, 5, e23. [Google Scholar] [CrossRef] [PubMed]
  54. Firstbeat. Firstbeat Life™ for Partners—Firstbeat. Available online: https://www.firstbeat.com/en/wellness-services/firstbeat-life-for-partners/ (accessed on 24 August 2022).
  55. Firstbeat. More Recovery and Sleep during COVID-19 Pandemic—But More Inactivity Too. Available online: https://www.firstbeat.com/en/news/covid-19-data-reveals-changes/ (accessed on 24 August 2022).
  56. Barizien, N.; Le Guen, M.; Russel, S.; Touche, P.; Huang, F.; Vallée, A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 2021, 11, 14042. [Google Scholar] [CrossRef]
  57. Hajduczok, A.G.; DiJoseph, K.M.; Bent, B.; Thorp, A.K.; Mullholand, J.B.; MacKay, S.; Barik, S.; Coleman, J.J.; Paules, C.I.; Tinsley, A. Physiologic Response to the Pfizer-BioNTech COVID-19 Vaccine Measured Using Wearable Devices: Prospective Observational Study. JMIR Form. Res. 2021, 5, e28568. [Google Scholar] [CrossRef]
  58. Alavi, A.; Bogu, G.K.; Wang, M.; Rangan, E.S.; Brooks, A.W.; Wang, Q.; Higgs, E.; Celli, A.; Mishra, T.; Metwally, A.A.; et al. Real-time alerting system for COVID-19 and other stress events using wearable data. Nat. Med. 2022, 28, 175–184. [Google Scholar] [CrossRef]
  59. Rodrigues, E.; Lima, D.; Barbosa, P.; Gonzaga, K.; Guerra, R.O.; Pimentel, M.; Barbosa, H.; Maciel, Á. HRV Monitoring Using Commercial Wearable Devices as a Health Indicator for Older Persons during the Pandemic. Sensors 2022, 22, 2001. [Google Scholar] [CrossRef]
  60. Kwon, C.Y.; Lee, B. Impact of COVID-19 Vaccination on Heart Rate Variability: A Systematic Review. Vaccines 2022, 10, 2095. [Google Scholar] [CrossRef]
  61. Schonfeld, I.S.; Bianchi, R.; Palazzi, S. What is the difference between depression and burnout? An ongoing debate. Riv. Psichiatr. 2018, 53, 218–219. [Google Scholar] [CrossRef] [PubMed]
  62. Chirico, F. Job stress models for predicting burnout syndrome: A review. Ann. Dell’istituto Super. Sanita 2016, 52, 443–456. [Google Scholar] [CrossRef]
  63. Rudland, J.R.; Golding, C.; Wilkinson, T.J. The stress paradox: How stress can be good for learning. Med. Educ. 2020, 54, 40–45. [Google Scholar] [CrossRef] [PubMed]
  64. Lee, S.; Kleiner, B.H. Electronic surveillance in the workplace. Manag. Res. News 2003, 26, 72–81. [Google Scholar] [CrossRef]
  65. Brown, E.A. The Fitbit Fault Line: Two Proposals to Protect Health and Fitness Data at Work. Yale J. Health Policy Law Ethics 2016, 16, 1–49. [Google Scholar]
  66. Forcier, K.; Stroud, L.R.; Papandonatos, G.D.; Hitsman, B.; Reiches, M.; Krishnamoorthy, J.; Niaura, R. Links between physical fitness and cardiovascular reactivity and recovery to psychological stressors: A meta-analysis. Health Psychol. 2006, 25, 723. [Google Scholar] [CrossRef] [PubMed]
  67. Skornyakov, E.; Gaddameedhi, S.; Paech, G.M.; Sparrow, A.R.; Satterfield, B.C.; Shattuck, N.L.; Layton, M.E.; Karatsoreos, I.; van Dongen, H.P.A. Cardiac autonomic activity during simulated shift work. Ind. Health 2019, 57, 118–132. [Google Scholar] [CrossRef] [PubMed]
  68. Tams, S.; Ahuja, M.; Thatcher, J.; Grover, V. Worker stress in the age of mobile technology: The combined effects of perceived interruption overload and worker control. J. Strateg. Inf. Syst. 2020, 29, 101595. [Google Scholar] [CrossRef]
  69. Sharma, V.K.; Nandeesha, H.; Vinod, K.V.; Subramanian, S.K.; Sankar, D.S.; Rajendran, R. Comparison of anthropometric, cardiovascular, autonomic, baroreflex sensitivity, aerobic fitness, inflammatory markers and oxidative stress parameters between first degree relatives of diabetes and controls. Diabetes Metab. Syndr. 2019, 13, 652–658. [Google Scholar] [CrossRef] [PubMed]
  70. Xhyheri, B.; Manfrini, O.; Mazzolini, M.; Pizzi, C.; Bugiardini, R. Heart rate variability today. Prog. Cardiovasc. Dis. 2012, 55, 321–331. [Google Scholar] [CrossRef]
  71. Gouin, J.P.; Wenzel, K.; Boucetta, S.; O’Byrne, J.; Salimi, A.; Dang-Vu, T.T. High-frequency heart rate variability during worry predicts stress-related increases in sleep disturbances. Sleep Med. 2015, 16, 659–664. [Google Scholar] [CrossRef] [PubMed]
  72. Altena, E.; Baglioni, C.; Espie, C.A.; Ellis, J.; Gavriloff, D.; Holzinger, B.; Schlarb, A.; Frase, L.; Jernelöv, S.; Riemann, D. Dealing with sleep problems during home confinement due to the COVID-19 outbreak: Practical recommendations from a task force of the European CBT-I Academy. J. Sleep Res. 2020, 29, e13052. [Google Scholar] [CrossRef]
  73. Giese, M.; Unternaehrer, E.; Brand, S.; Calabrese, P.; Holsboer-Trachsler, E.; Eckert, A. The interplay of stress and sleep impacts BDNF level. PLoS ONE 2013, 8, e76050. [Google Scholar] [CrossRef]
  74. Âkerstedt, T. Psychosocial stress and impaired sleep. Scand. J. Work. Environ. Health 2006, 32, 493–501. [Google Scholar] [CrossRef] [PubMed]
  75. Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-term heart rate variability—Influence of gender and age in healthy subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [PubMed]
  76. Garavaglia, L.; Gulich, D.; Defeo, M.M.; Thomas Mailland, J.; Irurzun, I.M. The effect of age on the heart rate variability of healthy subjects. PLoS ONE 2021, 16, e0255894. [Google Scholar] [CrossRef] [PubMed]
  77. Balint, E.M.; Angerer, P.; Guendel, H.; Marten-Mittag, B.; Jarczok, M.N. Stress Management Intervention for Leaders Increases Nighttime SDANN: Results from a Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 3841. [Google Scholar] [CrossRef] [PubMed]
  78. Truong, H.; McLachlan, C.S. Analysis of Start-Up Digital Mental Health Platforms for Enterprise: Opportunities for Enhancing Communication between Managers and Employees. Sustainability 2022, 14, 3929. [Google Scholar] [CrossRef]