Author(s):
- Bækgaard, Per
- Petersen, Michael Kai
- Larsen, Jakob Eg
Abstract:
The emergence of mobile eye trackers embedded in next generation smartphones or VR displays will make it possible to trace not only what objects we look at but also the level of attention in a given situation. Exploring whether we can quantify the engagement of a user interacting with a laptop, we apply mobile eye tracking in an in-depth study over 2 weeks with nearly 10.000 observations to assess pupil size changes, related to attentional aspects of alertness, orientation and conflict resolution. Visually presenting conflicting cues and targets we hypothesize that it’s feasible to measure the allocated effort when responding to confusing stimuli. Although such experiments are normally carried out in a lab, we have initial indications that we are able to differentiate between sustained alertness and complex decision making even with low cost eye tracking “in the wild”. From a quantified self perspective of individual behavioural adaptation, the correlations between the pupil size and the task dependent reaction time and error rates may longer term provide a foundation for modifying smartphone content and interaction to the users perceived level of attention.
Document:
https://link.springer.com/chapter/10.1007%2F978-3-319-40250-5_39#Sec2
References:
- Ang, Y.S., Manohar, S., Apps, M.A.J.: Commentary: noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. Front. Behav. Neurosci. 9, 310 (2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644795/pdf/fnbeh-09-00310.pdf, http://journal.frontiersin.org/Article/10.3389/fnbeh.2015.00310/abstract CrossRefGoogle Scholar
- 2.Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Ann. Rev. Neurosci. 28(1), 403–450 (2005). http://www.annualreviews.org/doi/abs/10.1146/annurev.neuro.28.061604.135709 CrossRefGoogle Scholar
- 3.Bækgaard, P.: Simple python interface to the Eye Tribe eye tracker (2015). https://github.com/baekgaard/peyetribe/
- 4.Bækgaard, P.: Attention Network Test implemented in PsychoPy (2016). https://github.com/baekgaard/ant
- 5.Baekgaard, P., Petersen, M.K., Larsen, J.E.: Differentiating attentional network components using mobile eye tracking (in preparation)Google Scholar
- 6.Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of processing resources (1982)Google Scholar
- 7.Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I.: Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14(3), 340–347 (2002). http://www.mitpressjournals.org//abs/10.1162/089892902317361886 CrossRefGoogle Scholar
- 8.Gabay, S., Pertzov, Y., Henik, A.: Orienting of attention, pupil size, and the norepinephrine system. Attention Percept. Psychophysics 73(1), 123–129 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21258914 CrossRefGoogle Scholar
- 9.Hampel, F.R.: The influence curve and its role in robust estimation. J. Am. Stat. Assoc. 69(346), 383–393 (1974). http://www.tandfonline.com//abs/10.1080/01621459.1974.10482962 MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Holmqvist, K.: Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford (2011)Google Scholar
- 11.Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 99–104 (2007)CrossRefGoogle Scholar
- 12.Hyönä, J., Tommola, J., Alaja, A.M.: Pupil dilation as a measure of processing load in simultaneous interpretation and other language tasks. Q. J. Exp. Psychology Sect. A 48(3), 598–612 (1995). http://www.tandfonline.com//abs/10.1080/14640749508401407 CrossRefGoogle Scholar
- 13.Joshi, S., Li, Y., Kalwani, R.M., Gold, J.I.: Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89(1), 221–234 (2016)CrossRefGoogle Scholar
- 14.Laeng, B., Ørbo, M., Holmlund, T., Miozzo, M.: Pupillary stroop effects. Cogn. Process. 12(1), 13–21 (2011)CrossRefGoogle Scholar
- 15.McKinney, W.: Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference 1697900(Scipy), pp. 51-56 (2010). http://conference.scipy.org/proceedings/scipy2010/mckinney.html
- 16.Oliphant, T.E.: SciPy: open source scientific tools for python. Comput. Sci. Eng. 9, 10–20 (2007). http://www.scipy.org/ CrossRefGoogle Scholar
- 17.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2012). http://dl.acm.org/citation.cfm?id=2078195, http://arxiv.org/abs/1201.0490 MathSciNetzbMATHGoogle Scholar
- 18.Peirce, J.W.: PsychoPy-psychophysics software in python. J. Neurosci. Methods 162(1–2), 8–13 (2007). http://dx.org/10.1016/j.jneumeth.2006.11.017 CrossRefGoogle Scholar
- 19.Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007). http://ipython.org CrossRefGoogle Scholar
- 20.Posner, M.I.: Attentional networks and consciousness. Front. Psychol. 3, 1–4 (2012). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3298960/ Google Scholar
- 21.The Eye Tribe: The Eye Tribe API Reference. http://dev.theeyetribe.com/api/
- 22.Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)CrossRefGoogle Scholar
- 23.Varazzani, C., San-Galli, A., Gilardeau, S., Bouret, S.: Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J. Neurosci. 35(20), 7866–7877 (2015). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644795/pdf/fnbeh-09-00310.pdf, http://www.jneurosci.org/cgi//10.1523/JNEUROSCI.0454-15.2015 CrossRefGoogle Scholar