Author(s):
- Marcus, Gary
Abstract:
Although deep learning has historical roots going back decades, neither the term “deep learning” nor the approach was popular just over five years ago, when the field was reignited by papers such as Krizhevsky, Sutskever and Hinton’s now classic (2012) deep network model of Imagenet. What has the field discovered in the five subsequent years? Against a background of considerable progress in areas such as speech recognition, image recognition, and game playing, and considerable enthusiasm in the popular press, I present ten concerns for deep learning, and suggest that deep learning must be supplemented by other techniques if we are to reach artificial general intelligence.
Documentation:
https://arxiv.org/abs/1801.00631
References:
- Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017). Synthesizing Robust Adversarial Examples. arXiv, cs.CV.
- Besold, T. R., Garcez, A. D., Bader, S., Bowman, H., Domingos, P., Hitzler, P. et al. (2017). Neural-Symbolic Learning and Reasoning: A Survey and Interpretation. arXiv, cs.AI.
- Bošnjak, M., Rocktäschel, T., Naradowsky, J., & Riedel, S. (2016). Programming with a Differentiable Forth Interpreter. arXiv.
- Bottou, L. (2015). Two big challenges in machine learning. Proceedings from 32nd International Conference on Machine Learning.
- Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated corpus for learning natural language inference. arXiv, cs.CL.
- Chollet, F. (2017). Deep Learning with Python. Manning Publications.
- Cireşan, D., Meier, U., Masci, J., & Schmidhuber, J. (2012). Multi-column deep neural network for traffic sign classification. Neural networks.
- Davis, E., & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9)(9), 92-103.
- Davis, E. (2016). How to Write Science Questions that Are Easy for People and Hard for Computers. AI magazine, 37(1)(1), 13-22.
- Davis, E., Marcus, G., & Frazier-Logue, N. (2017). Commonsense reasoning about containers using radically incomplete information. Artificial Intelligence, 248, 46-84.
- Deng, J., Dong, W., Socher, R., Li, L. J., Li – Computer Vision and, K., & 2009 Imagenet: A large-scale hierarchical image database. Proceedings from Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on.
- Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2)(2), 179-211. Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A. et al. (2017).
- Robust Physical-World Attacks on Deep Learning Models. arXiv, cs.CR.
- Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: a critical analysis. Cognition, 28(1-2)(1-2), 3-71.
- Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. Basic books. Gelman, S. A., Leslie, S. J., Was, A. M., & Koch, C. M. (2015).
- Children’s interpretations of general quantifiers, specific quantifiers, and generics. Lang Cogn Neurosci, 30(4)(4), 448-461.
- Genesereth, M., Love, N., & Pell, B. (2005). General game playing: Overview of the AAAI competition. AI magazine, 26(2)(2), 62.
- George, D., Lehrach, W., Kansky, K., Lázaro-Gredilla, M., Laan, C., Marthi, B. et al. (2017). A generative vision model that trains with high data efficiency and breaks text-based CAPTCHAs. Science, 358(6368)(6368).
- Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: the newborn brain detects identity relations and sequential position in speech. J Cogn Neurosci, 24(3)(3), 564-574.
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press
- Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A. et al. (2016). Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626)(7626), 471-476.
- Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., & Meger, D. (2017). Deep Reinforcement Learning that Matters. arXiv, cs.LG.
- Huang, S., Papernot, N., Goodfellow, I., Duan, Y., & Abbeel, P. (2017). Adversarial Attacks on Neural Network Policies. arXiv, cs.LG.
- Jia, R., & Liang, P. (2017). Adversarial Examples for Evaluating Reading Comprehension Systems. arXiv.
- Kahneman, D. (2013). Thinking, fast and slow (1st pbk. ed. ed.). New York: Farrar, Straus and Giroux.
- Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou, X. et al. (2017). Schema Networks: Zero-shot Transfer with a Generative Causal Model of Intuitive Physics. arXIv, cs.AI.
- Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Hermann, K. M., Melis, G. et al. (2017). The NarrativeQA Reading Comprehension Challenge. arXiv, cs.CL.
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In (pp. 1097-1105).
- Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350(6266)(6266), 1332-1338.
- Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building Machines That Learn and Think Like People. Behav Brain Sci, 1-101.
- Lake, B. M., & Baroni, M. (2017). Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks. arXiv.
- Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). Big data. The parable of Google Flu: traps in big data analysis. Science, 343(6176)(6176), 1203-1205.
- Le, Q. V., Ranzato, M.-A., Monga, R., Devin, M., Chen, K., Corrado, G. et al. (2012). Building high-level features using large scale unsupervised learning. Proceedings from International Conference on Machine Learning.
- LeCun, Y. (1989). Generalization and network design strategies. Technical Report CRG-TR-89-4. Lerer, A., Gross, S., & Fergus, R. (2016). Learning Physical Intuition of Block Towers by Example. arXiv, cs.AI.
- Lighthill, J. (1973). Artificial Intelligence: A General Survey. Artificial Intelligence: a paper symposium.
- Lipton, Z. C. (2016). The Mythos of Model Interpretability. arXiv, cs.LG.
- Lopez-Paz, D., Nishihara, R., Chintala, S., Schölkopf, B., & Bottou, L. (2017). Discovering causal signals in images. Proceedings from Proceedings of Computer Vision and Pattern Recognition (CVPR).
- Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. (2017). Predicting Deeper into the Future of Semantic Segmentation. International Conference on Computer Vision (ICCV 2017).
- Marcus, G., Rossi, F., Veloso – AI Magazine, M., & 2016. (2016). Beyond the Turing Test. AI Magazine, Whole issue.
- Marcus, G., Marblestone, A., & Dean, T. (2014). The atoms of neural computation. Science, 346(6209)(6209), 551-552.
- Marcus, G. (in prep). Innateness, AlphaZero, and Artificial Intelligence.
- Marcus, G. (2014). What Comes After the Turing Test? The New Yorker.
- Marcus, G. (2012). Is “Deep Learning” a Revolution in Artificial Intelligence? The New Yorker.
- Marcus, G. F. (2008). Kluge : the haphazard construction of the human mind. Boston: Houghton Mifflin.
- Marcus, G. F. G. F. (2001). The Algebraic Mind: Integrating Connectionism and cognitive science. Cambridge, Mass.: MIT Press.
- Marcus, G. F. (1998a). Rethinking eliminative connectionism. Cogn Psychol, 37(3)(3), 243-282.
- Marcus, G. F. (1998b). Can connectionism save constructivism? Cognition, 66(2)(2), 153-182.
- Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992). Overregularization in language acquisition. Monogr Soc Res Child Dev, 57(4)(4), 1-182.
- Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283(5398)(5398), 77-80.
- Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G. et al. (2015).
- Human-level control through deep reinforcement learning. Nature, 518(7540)(7540), 529-533.
- Neelakantan, A., Le, Q. V., Abadi, M., McCallum, A., & Amodei, D. (2016). Learning a Natural Language Interface with Neural Programmer. arXiv.
- Ng, A. (2016). What Artificial Intelligence Can and Can’t Do Right Now. Harvard Business Review.
- Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., & Yosinski, J. (2016). Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space. arXiv,cs.CV.
- Nguyen, A., Yosinski, J., & Clune, J. (2014). Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images. arXiv, cs.CV.
- Norvig, P. (2016). State-of-the-Art AI: Building Tomorrow’s Intelligent Systems. Proceedings from EmTech Digital, San Francisco.
- O’Neil, C. (2016). Weapons of math destruction : how big data increases inequality and threatens democracy.
- Ortiz Jr, C. L. (2016). Why we need a physically embodied Turing test and what it might look like. AI magazine, 37(1)(1), 55-63.
- Paritosh, P., & Marcus, G. (2016). Toward a comprehension challenge, using crowdsourcing as a tool. AI Magazine, 37(1)(1), 23-31.
- Pearl, J. (2000). Causality : models, reasoning, and inference /. Cambridge, U.K.; New York :Cambridge University Press.
- Pinker, S., & Prince, A. (1988). On language and connectionism: analysis of a parallel distributed processing model of language acquisition. Cognition, 28(1-2)(1-2), 73-193.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. arXiv, cs.LG.
- Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic Routing Between Capsules. arXiv, cs.CV.
- Samek, W., Wiegand, T., & Müller, K.-R. (2017). Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models. arXiv, cs.AI.
- Schank, R. C., & Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding: an Inquiry into Human Knowledge Structures. Hillsdale, NJ: L. Erlbaum.
- Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks.
- Schoenick, C., Clark, P., Tafjord, O., P, T., & Etzioni, O. (2017). Moving beyond the Turing Test with the Allen AI Science Challenge. Communications of the ACM, 60 (9)(9), 60-64.
- Sculley, D., Phillips, T., Ebner, D., Chaudhary, V., & Young, M. (2014). Machine learning: The high-interest credit card of technical debt. Proceedings from SE4ML: Software Engineering for Machine Learning (NIPS 2014 Workshop).
- Socher, R., Huval, B., Manning, C. D., & Ng, A. Y. (2012). Semantic compositionality through recursive matrix-vector spaces. Proceedings from Proceedings of the 2012 joint conference on empirical methods in natural language processing and computational natural language learning.
- Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Dev Sci, 10(1)(1), 89-96.
- Stoica, I., Song, D., Popa, R. A., Patterson, D., Mahoney, M. W., Katz, R. et al. (2017). A Berkeley View of Systems Challenges for AI. arXiv, cs.AI.
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. et al. (2013). Intriguing properties of neural networks. arXiv, cs.CV.
- Vinyals, O.,Toshev, A., Bengio, S., & Erhan, D. (2014). Show and Tell: A Neural Image CaptionGenerator. arXiv, cs.CV.
- Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia, P., & Zoran, D. (2017). Visual Interaction Networks. arXiv.
- Williams, A., Nangia, N., & Bowman, S. R. (2017). A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference. arXiv, cs.CL.
- Wu, J., Lu, E., Kohli, P., Freeman, B., & Tenen baum, J. (2017). Learning to See Physics viaVisual De-animation. Proceedings from Advances in Neural Information Processing Systems.
- Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2017). Learning Transferable Architectures for Scalable Image Recognition. arXiv, cs.CV.