Author(s):
- Sofie Compernolle
- Ann DeSmet
- Louise Poppe
- Geert Crombez
- Ilse De Bourdeaudhuij
- Greet Cardon
- Hidde P. van der Ploeg
- Delfien Van Dyck
Abstract:
Background
Sedentary behavior occurs largely subconsciously, and thus specific behavior change techniques are needed to increase conscious awareness of sedentary behavior. Chief amongst these behavior change techniques is self-monitoring of sedentary behavior. The aim of this systematic review and meta-analysis was to evaluate the short-term effectiveness of existing interventions using self-monitoring to reduce sedentary behavior in adults.
Methods
Four electronic databases (PubMed, Embase, Web of Science, and The Cochrane Library) and grey literature (Google Scholar and the International Clinical Trials Registry Platform) were searched to identify appropriate intervention studies. Only (cluster-)randomized controlled trials that 1) assessed the short-term effectiveness of an intervention aimed at the reduction of sedentary behavior, 2) used self-monitoring as a behavior change technique, and 3) were conducted in a sample of adults with an average age ≥ 18 years, were eligible for inclusion. Relevant data were extracted, and Hedge’s g was used as the measure of effect sizes. Random effects models were performed to conduct the meta-analysis.
Results
Nineteen intervention studies with a total of 2800 participants met the inclusion criteria. Results of the meta-analyses showed that interventions using self-monitoring significantly reduced total sedentary time (Hedges g = 0,32; 95% CI = 0,14 − 0,50; p = 0,001) and occupational sedentary time (Hedge’s g = 0,56; 95% CI = 0,07 − 0,90; p = 0,02) on the short term. Subgroup analyses showed that significant intervention effects were only found if objective self-monitoring tools were used (g = 0,40; 95% CI = 0,19 − 0,60; p < 0,001), and if the intervention only targeted sedentary behavior (g = 0,45; 95% CI = 0,15-0,75; p = 0,004). No significant intervention effects were found on the number of breaks in sedentary behavior.
Conclusions
Despite the small sample sizes, and the large heterogeneity, results of the current meta-analysis suggested that interventions using self-monitoring as a behavior change technique have the potential to reduce sedentary behavior in adults. If future – preferably large-scale studies – can prove that the reductions in sedentary behavior are attributable to self-monitoring and can confirm the sustainability of this behavior change, multi-level interventions including self-monitoring may impact public health by reducing sedentary behavior.
Documentation:
https://doi.org/10.1186/s12966-019-0824-3
References:
Ng SW, BM P. Time use and physical activity: a shift away from movement across the globe. Obes Rev. 2012;13:659–80.
Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, Troiano RP, Hollenbeck A, Schatzkin AJ. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95:437–45.
Loyen A, Clarke-Cornwell AM, Anderssen SA, Hagströmer M, Sardinha LB, Sundquist K, Ekelund U, Steene-Johannessen J, Baptista F, Hansen BH. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med. 2017;47(7):1421-35.
Harvey JA, Chastin SF, Skelton DA. How sedentary are older people? A systematic review of the amount of sedentary behavior. J Aging Phys Act. 2015;23:471–87.
de Rezende LF, Lopes MR, Rey-López JP, Matsudo VK, do Carmo Luiz O. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;21:8.
Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.
Rosenberg DE, Bellettiere J, Gardiner PA, Villarreal VN, Crist K, Kerr J. Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. J Gerontol Ser A Biol Med Sci. 2016;71:78–83.
Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, Bauman A, Lee I-M, Series LPA, Group LSBW. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388:1302–10.
Chau JY, Grunseit AC, Chey T, Stamatakis E, Brown WJ, Matthews CE, Bauman AE, HP v d P. Daily sitting time and all-cause mortality: a meta-analysis. PLoS One. 2013;8:e80000.
Vlaams Instituut voor Gezondheidspromotie en Ziektepreventie: Syntheserapport sedentair gedrag; 2015. http://www.vigez.be/files/voedingenbeweging/syntheserapportsedentairgedrag.pdf.
Canadian Society for Exercise Physiology: Canadian physical activity guidelines, Canadian sedentary behaviour guidelines; 2012. http://www.csep.ca/CMFiles/Guidelines/CSEP_Guidelines_Handbook.pdf.
Australian Government Department of Health: Australia’s physical activity and sedentary behaviour Guidelines; 2014. http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines.
Martin A, Fitzsimons C, Jepson R, Saunders DH, van der Ploeg HP, Teixeira PJ, Gray CM, Mutrie N. Interventions with potential to reduce sedentary time in adults: systematic review and meta-analysis. Br J Sports Med. 2015;49:1056–63.
van der Ploeg HP, Venugopal K, Chau JY, van Poppel MN, Breedveld K, Merom D, Bauman AE. Non-occupational sedentary behaviors: population changes in the Netherlands, 1975–2005. Am J Prev Med. 2013;44:382–7.
Gardner B, Smith L, Lorencatto F, Hamer M, Biddle SJ. How to reduce sitting time? A review of behaviour change strategies used in sedentary behaviour reduction interventions among adults. Health Psychol Rev. 2016;10:89–112.
Maher JP, Conroy DE. A dual-process model of older Adults’ sedentary behavior. Health Psychol. 2016;35:262–72.
Welk GJ. The youth physical activity promotion model: a conceptual bridge between theory and practice. Quest. 1999;51:5–23.
Conroy DE, Maher JP, Elavsky S, Hyde AL, Doerksen SE. Sedentary behavior as a daily process regulated by habits and intentions. Health Psychol. 2013;32:1149.
Verplanken B, W W. Interventions to break and create consumer habits. J Pub Policy Marketing. 2006;25:90–103.
Aarts H, Dijksterhuis A. The silence of the library: environment, situational norm, and social behavior. J Pers Soc Psychol. 2003;84:18.
Hermsen S, Frost J, Renes RJ, Kerkhof P. Using feedback through digital technology to disrupt and change habitual behavior: a critical review of current literature. Comput Human Behav. 2016;57:61–74.
Quinn JM, Pascoe A, Wood W, Neal DT. Can’t control yourself? Monitor those bad habits. Pers Soc Psychol Bull. 2010;36:499–511.
Michie S, Ashford S, Sniehotta FF, Dombrowski SU, Bishop A, French DP. A refined taxonomy of behaviour change techniques to help people change their physical activity and healthy eating behaviours: the CALO-RE taxonomy. Psychol Health. 2011;26:1479–98.
Turner-McGrievy GM, Beets MW, Moore JB, Kaczynski AT, Barr-Anderson DJ, Tate DF. Comparison of traditional versus mobile app self-monitoring of physical activity and dietary intake among overweight adults participating in an mHealth weight loss program. J Am Med Inform Assoc. 2013;20:513–8.
Kang M, Marshall SJ, Barreira TV, JO L. Effect of pedometer-based physical activity interventions: a meta-analysis. Res Q Exerc Sport. 2009;80:648–55.
Matthews CE, Welk GJ Use of self-report instruments to assess physical activity. Phys Act Assess Health-Relat Res. 2002;107:107–23.
Leask CF, Harvey JA, Skelton DA, Chastin SF. Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom). Eur Rev Aging Phys Act. 2015;12:4.
Kang NE, Yoon WC. Age-and experience-related user behavior differences in the use of complicated electronic devices. Int J Human-Comput Stud. 2008;66:425–37.
Chastin SF, Fitzpatrick N, Andrews M, DicCoce N. Determinants of sedentary behavior, motivation, barriers and strategies to reduce sitting time in older women: a qualitative investigation. Int J Environ Res Public Health. 2014;11:773–91.
Mcewan T, Tam-Seto L, Dogra S. Perceptions of sedentary behavior among socially engaged older adults. Gerontologist. 2016;57:735–44.
Chin SH, Kahathuduwa C, M B. Is sedentary behaviour unhealthy and if so, does reducing it improve this? Int J Clin Pract. 2017;71:e12925.
Hedges LV. Distribution theory for Glass’s estimator of effect size and related estimators. J Educ Stat. 1981;6:107–28.
Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. New Jersey: Wiley; 2011.
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557.
Sanders JP, Loveday A, Pearson N, Edwardson C, Yates T, Biddle SJ, Esliger DW. Devices for self-monitoring sedentary time or physical activity: a scoping review. J Med Internet Res. 2016;18:e90.
Wyke S, Bunn C, Andersen E, Silva MN, van Nassau F, McSkimming P, Kolovos S, Gill JMR, Gray CM, Hunt K, et al. The effect of a programme to improve men’s sedentary time and physical activity: the European fans in training (EuroFIT) randomised controlled trial. PLoS Med. 2019;16:e1002736.
Adams MM, Davis PG, DL G. A hybrid online intervention for reducing sedentary behavior in obese women. Front Public Health. 2013;1:45.
Arrogi A, Bogaerts A, Seghers J, Devloo K, Vanden Abeele V, Geurts L, Wauters J, Boen F. Evaluation of stAPP: a smartphone-based intervention to reduce prolonged sitting among Belgian adults. Health Promot Int. 2017;34(1):16-27.
Ashe MC, Winters M, Hoppmann CA, Dawes MG, Gardiner PA, Giangregorio LM, Madden KM, McAllister MM, Wong G, Puyat JH, et al. “Not just another walking program”: everyday activity supports you (EASY) model-a randomized pilot study for a parallel randomized controlled trial. Pilot Feasibility Stud. 2015;1:4.
Biddle SJ, Edwardson CL, Wilmot EG, Yates T, Gorely T, Bodicoat DH, Ashra N, Khunti K, Nimmo MA, Davies MJ. A randomised controlled trial to reduce sedentary time in Young adults at risk of type 2 diabetes mellitus: project STAND (sedentary time ANd diabetes). PLoS One. 2015;10:e0143398.
Carr LJ, Karvinen K, Peavler M, Smith R, Cangelosi K. Multicomponent intervention to reduce daily sedentary time: a randomised controlled trial. BMJ Open. 2013;3:e003261.
Brakenridge CL, Fjeldsoe BS, Young DC, Winkler EAH, Dunstan DW, Straker LM, Healy GN. Evaluating the effectiveness of organisational-level strategies with or without an activity tracker to reduce office workers’ sitting time: a cluster-randomised trial. Int J Behav Nutr Phys Act. 2016;13:115.
De Cocker K, De Bourdeaudhuij I, Cardon G, Vandelanotte C. The effectiveness of a web-based computer-tailored intervention on workplace sitting: a randomized controlled trial. J Med Internet Res. 2016;18:e96.
De Greef KP, Deforche BI, Ruige JB, Bouckaert JJ, Tudor-Locke CE, Kaufman JM, De Bourdeaudhuij IM. The effects of a pedometer-based behavioral modification program with telephone support on physical activity and sedentary behavior in type 2 diabetes patients. Patient Educ Couns. 2011;84:275–9.
Edwardson CL, Yates T, Biddle SJH, Davies MJ, Dunstan DW, Esliger DW, Gray LJ, Jackson B, O’Connell SE, Waheed G, Munir F. Effectiveness of the stand more AT (SMArT) work intervention: cluster randomised controlled trial. BMJ. 2018;363:k3870.
Klaren RE, Hubbard EA, Motl RW. Efficacy of a behavioral intervention for reducing sedentary behavior in persons with multiple sclerosis: a pilot examination. Am J Prev Med. 2014;47:613–6.
Lin YP, Hong OS, Lin CC, Lu SH, Chen MM, Lee KC. A “sit less, walk more” workplace intervention for office workers: long-term efficacy of a quasi-experimental study. J Occup Environ Med. 2018;60:E290–9.
Lyons EJ, Swartz MC, Lewis ZH, Martinez E, Jennings K. Feasibility and acceptability of a wearable technology physical activity intervention with telephone counseling for mid-aged and older adults: a randomized controlled pilot trial. JMIR Mhealth Uhealth. 2017;5:e28.
Maylor BD, Edwardson CL, Zakrzewski-Fruer JK, Champion RB, Bailey DP. Efficacy of a multicomponent intervention to reduce workplace sitting time in office workers: a cluster randomized controlled trial. J Occup Environ Med. 2018;60:787–95.
Smith RD. Intervention to reduce sedentary time and improve cardiometabolic risk factors among sedentary employees; 2012. p. 58.
Spring B, Pellegrini C, McFadden HG, Pfammatter AF, Stump TK, Siddique J, King AC, Hedeker D. Multicomponent mHealth intervention for large, sustained change in multiple diet and activity risk behaviors: the make better choices 2 randomized controlled trial. J Med Internet Res. 2018;20:e10528.
White I, Smith L, Aggio D, Shankar S, Begum S, Matei R, Fox KR, Hamer M, Iliffe S, Jefferis BJ, et al. On your feet to earn your seat: pilot RCT of a theory-based sedentary behaviour reduction intervention for older adults. Pilot Feasibility Stud. 2017;3:23.
Kitagawa T, Higuchi Y, Todo E, Ueda T, Ando S, Murakami T. Tailored feedback reduced prolonged sitting time and improved the health of housewives: a single-blind randomized controlled pilot study. Women Health. 2019:1–12.
Arrogi A, Schotte A, Bogaerts A, Boen F, Seghers J. Short- and long-term effectiveness of a three-month individualized need-supportive physical activity counseling intervention at the workplace. BMC Public Health. 2017;17:52.
Adams MM, Davis PG, Gill DL. A hybrid online intervention for reducing sedentary behavior in obese women. Front Public Health. 2013;1:45.
Hempel S, Miles JN, Booth MJ, Wang Z, Morton SC, PGJSr S. Risk of bias: a simulation study of power to detect study-level moderator effects in meta-analysis, vol. 2; 2013. p. 107.
Pressley M, Afflerbach P. Verbal protocols of reading: the nature of constructively responsive reading. London: Routledge; 2012.
Prince S, Saunders T, Gresty K, Reid RD. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: a systematic review and meta-analysis of controlled trials. Obes Rev. 2014;15:905–19.
van der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14:142.
Chaput J-P, Carson V, Gray C. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11:12575–81.
Howlett N, Trivedi D, Troop NA, AM C. Are physical activity interventions for healthy inactive adults effective in promoting behavior change and maintenance, and which behavior change techniques are effective? A systematic review and meta-analysis. Transl Behav Med. 2018;9:147–57.
Chambers AJ, Robertson MM, Baker NA. The effect of sit-stand desks on office worker behavioral and health outcomes: a scoping review. Appl Ergon. 2019;78:37–53.
Shrestha N, Kukkonen-Harjula KT, Verbeek JH, Ijaz S, Hermans V, Pedisic Z. Workplace interventions for reducing sitting at work. Cochrane Database Syst Rev. 2018;12:CD010912.
Chastin SF, Egerton T, Leask C, Stamatakis E. Meta-analysis of the relationship between breaks in sedentary behavior and cardiometabolic health. Obesity (Silver Spring). 2015;23:1800–10.
Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89:1322–7.