Author(s):

  • Hessels, Roy S.
  • Hooge, Ignace T.C.

Abstract:

Eye tracking is a popular research tool in developmental cognitive neuroscience for studying the development of perceptual and cognitive processes. However, eye tracking in the context of development is also challenging. In this paper, we ask how knowledge on eye-tracking data quality can be used to improve eye-tracking recordings and analyses in longitudinal research so that valid conclusions about child development may be drawn. We answer this question by adopting the data-quality perspective and surveying the eye-tracking setup, training protocols, and data analysis of the YOUth study (investigating neurocognitive development of 6000 children). We first show how our eye-tracking setup has been optimized for recording high-quality eye-tracking data. Second, we show that eye-tracking data quality can be operator-dependent even after a thorough training protocol. Finally, we report distributions of eye-tracking data quality measures for four age groups (5 months, 10 months, 3 years, and 9 years), based on 1531 recordings. We end with advice for (prospective) developmental eye-tracking researchers and generalizations to other methodologies.

Document:

https://www.sciencedirect.com/science/article/pii/S187892931930297X?via%3Dihub#bibl0005

References:
  1. Amso and Johnson, 2006 D. Amso, S.P. Johnson Learning by selection: visual search and object perception in young infantsDev. Psychol., 42 (6) (2006), pp. 1236-1245CrossRefView Record in ScopusGoogle Scholar
  2. Aslin, 2012R.N. AslinInfant eyes: a window on cognitive developmentInfancy (2012)Google Scholar
  3. Aslin and McMurray, 2004R.N. Aslin, B. McMurrayAutomated corneal-reflection eye tracking in infancy: methodological developments and applications to cognitionInfancy, 6 (October (2)) (2004), pp. 155-163CrossRefView Record in ScopusGoogle Scholar
  4. Aslin, 2007R.N. AslinWhat’s in a look?Dev. Sci., 10 (January (1)) (2007), pp. 48-53CrossRefView Record in Scopus
  5. Google ScholarBrainard, 1997D.H. BrainardThe psychophysics toolboxSpat. Vis., 10 (4) (1997), pp. 433-436CrossRefView Record in Scopus
  6. Google ScholarCollewijn and Tamminga, 1984H. Collewijn, E.P. TammingaHuman smooth and saccadic eye movements during voluntary pursuit of different target motions on different backgroundsJ. Physiol., 351 (1984), pp. 217-250CrossRefView Record in ScopusGoogle Scholar
  7. Constantino et al., 2017J.N. Constantino, S. Kennon-McGill, C. Weichselbaum, N. Marrus, A. Haider, A.L. Glowinski, S. Gillespie, C. Klaiman, A. Klin, W. JonesInfant viewing of social scenes is under genetic control and is atypical in autismNature, 547 (July (7663)) (2017), pp. 340-344CrossRefView Record in ScopusGoogle Scholar
  8. Dalrymple et al., 2018K.A. Dalrymple, M.D. Manner, K.A. Harmelink, E.P. Teska, J.T. ElisonAn examination of recording accuracy and precision from eye tracking data from toddlerhood to adulthoodFront. Psychol. (May) (2018), pp. 1-12CrossRefView Record in ScopusGoogle Scholar
  9. Elsabbagh and Johnson, 2016M. Elsabbagh, M.H. JohnsonAutism and the social brain: the first-year puzzleBiol. Psychiatry (April) (2016), pp. 1-6View Record in ScopusGoogle ScholarElsabbagh et al., 2013M. Elsabbagh, J. Fernandes, S.J. Webb, G. Dawson, T. Charman, M.H. Johnson, The British Autism Study of Infant Siblings TeamDisengagement of visual attention in infancy is associated with emerging autism in toddlerhoodBiol. Psychiatry, 74 (August (3)) (2013), pp. 189-194ArticleDownload PDFView Record in ScopusGoogle Scholar
  10. Engel, 1977F.L. EngelVisual conspicuity, visual search and fixation tendencies of the eyeVis. Res., 17 (1977), pp. 95-108ArticleDownload PDFView Record in ScopusGoogle Scholar
  11. Franchak et al., 2011J.M. Franchak, K.S. Kretch, K.C. Soska, K.E. AdolphHead-mounted eye tracking: a new method to describe infant lookingChild Dev., 82 (October (6)) (2011), pp. 1738-1750CrossRefView Record in ScopusGoogle Scholar
  12. Frank et al., 2012M.C. Frank, E. Vul, R. SaxeMeasuring the development of social attention using free-viewingInfancy, 17 (4) (2012), pp. 355-375CrossRefView Record in ScopusGoogle Scholar
  13. Gredebäck et al., 2009G. Gredebäck, S. Johnson, C. von HofstenEye tracking in infancy researchDev. Neuropsychol., 35 (December (1)) (2009), pp. 1-19CrossRefView Record in ScopusGoogle ScholarGredebäck et al., 2010G. Gredebäck, L. Fikke, A. MelinderThe development of joint visual attention: a longitudinal study of gaze following during interactions with mothers and strangersDev. Sci., 13 (January (6)) (2010), pp. 839-848CrossRefView Record in ScopusGoogle Scholar
  14. Hessels et al., 2015aR.S. Hessels, R. Andersson, I.T.C. Hooge, M. Nyström, C. KemnerConsequences of eye color, positioning, and head movement for eye-tracking data quality in infant researchInfancy, 20 (June (6)) (2015), pp. 601-633CrossRefView Record in ScopusGoogle Scholar
  15. Hessels et al., 2015bR.S. Hessels, T.H.W. Cornelissen, C. Kemner, I.T.C. HoogeQualitative tests of remote eyetracker recovery and performance during head rotationBehav. Res. Methods, 47 (3) (2015), pp. 848-859CrossRefView Record in ScopusGoogle Scholar
  16. Hessels et al., 2016aR.S. Hessels, I.T.C. Hooge, C. KemnerAn in-depth look at saccadic search in infancyJ. Vis., 16 (June (8)) (2016), p. 10CrossRefGoogle Scholar
  17. Hessels et al., 2016bR.S. Hessels, C. Kemner, C. van den Boomen, I.T.C. HoogeThe area-of-interest problem in eyetracking research: a noise-robust solution for face and sparse stimuliBehav. Res. Methods, 48 (4) (2016), pp. 1694-1712CrossRefView Record in ScopusGoogle Scholar
  18. Hessels et al., 2017R.S. Hessels, D.C. Niehorster, C. Kemner, I.T.C. HoogeNoise-robust fixation detection in eye movement data: identification by two-means clustering (I2MC)Behav. Res. Methods, 49 (5) (2017), pp. 1802-1823CrossRefView Record in ScopusGoogle Scholar
  19. Hessels et al., 2018R.S. Hessels, D.C. Niehorster, M. Nyström, R. Andersson, I.T.C. HoogeIs the eye-movement field confused about fixations and saccades? A survey among 124 researchersR. Soc. Open Sci., 5 (August (180502)) (2018), pp. 1-23View Record in ScopusGoogle Scholar
  20. Hessels et al., 2019R.S. Hessels, G.A. Holleman, A. Kingstone, I.T.C. Hooge, C. KemnerGaze allocation in face-to-face communication is affected primarily by task structure and social context, not stimulus-driven factorsCognition, 184 (2019), pp. 28-43ArticleDownload PDFView Record in ScopusGoogle Scholar
  21. Holmqvist et al., 2011K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, J. van de WeijerEye Tracking: A Comprehensive Guide to Methods and MeasuresOxford University Press (2011)Google Scholar
  22. Holmqvist et al., 2012K. Holmqvist, M. Nyström, F. MulveyEye tracker data quality: what it is and how to measure itProceedings of the 2018 ACM Symposium on Eye Tracking Research Applications (2012), p. 45CrossRefView Record in ScopusGoogle Scholar
  23. Hooge et al., 2018aI.T.C. Hooge, G.A. Holleman, N.C. Haukes, R.S. HesselsGaze tracking accuracy in humans: one eye is sometimes better than twoBehav. Res. Methods (October) (2018), pp. 1-10View Record in ScopusGoogle Scholar
  24. Hooge et al., 2018bI.T.C. Hooge, D.C. Niehorster, M. Nyström, R. Andersson, R.S. HesselsIs human classification by experienced untrained observers a gold standard in fixation detection?Behav. Res. Methods, 50 (5) (2018), pp. 1864-1881CrossRefView Record in ScopusGoogle Scholar
  25. Hunnius and Geuze, 2004S. Hunnius, R.H. GeuzeDevelopmental changes in visual scanning of dynamic faces and abstract stimuli in infants: a longitudinal studyInfancy, 6 (2) (2004), pp. 231-255CrossRefView Record in ScopusGoogle Scholar
  26. JASP Team, 2018JASP TeamJASP (Version 0.8.5)[Computer Software] (2018)Technical ReportGoogle Scholar
  27. Johnson, 2010S.P. JohnsonHow infants learn about the visual worldCognit. Dev., 34 (August (7)) (2010), pp. 1158-1184CrossRefView Record in ScopusGoogle Scholar
  28. Jones et al., 2008W. Jones, K. Carr, A. KlinAbsence of preferential looking to the eyes of approaching adults predicts level of social disability in 2-year-old toddlers with autism spectrum disorderArch. Gen. Psychiatry, 65 (July (8)) (2008), pp. 946-954CrossRefView Record in ScopusGoogle Scholar
  29. Kowler, 2011E. KowlerEye movements: the past 25 yearsVis. Res., 51 (July (13)) (2011), pp. 1457-1483ArticleDownload PDFView Record in ScopusGoogle Scholar
  30. Land and Furneaux, 1997M.F. Land, S. FurneauxThe knowledge base of the oculomotor systemPhilos. Trans. R. Soc. B: Biol. Sci., 352 (1997), pp. 1231-1239View Record in ScopusGoogle Scholar
  31. Niehorster et al., 2018D.C. Niehorster, T.H.W. Cornelissen, K. Holmqvist, I.T.C. Hooge, R.S. HesselsWhat to expect from your remote eye-tracker when participants are unrestrainedBehav. Res. Methods, 50 (1) (2018), pp. 213-227CrossRefView Record in ScopusGoogle Scholar
  32. Nyström et al., 2013M. Nyström, R. Andersson, K. Holmqvist, J. van de WeijerThe influence of calibration method and eye physiology on eyetracking data qualityBehav. Res. Methods, 45 (1) (2013), pp. 272-288CrossRefView Record in ScopusGoogle Scholar
  33. Oakes, 2012L.M. OakesAdvances in eye tracking in infancy researchInfancy, 17 (1) (2012), pp. 1-8CrossRefView Record in ScopusGoogle Scholar
  34. Oakes, 2010L.M. OakesInfancy guidelines for publishing eye-tracking dataInfancy, 15 (January (1)) (2010), pp. 1-5CrossRefView Record in ScopusGoogle Scholar
  35. Orquin and Holmqvist, 2018J.L. Orquin, K. HolmqvistThreats to the validity of eye-movement research in psychologyBehav. Res. Methods, 50 (July (4)) (2018), pp. 1645-1656CrossRefView Record in ScopusGoogle Scholar
  36. Rayner, 1998K. RaynerEye movements in reading and information processing: 20 years of researchPsychol. Bull., 124 (3) (1998), pp. 372-422View Record in ScopusGoogle Scholar
  37. Renswoude et al., 2018D.R. Renswoude, M.E.J. Raijmakers, A. Koornneef, S.P. Johnson, S. Hunnius, I. VisserGazepath: an eye-tracking analysis tool that accounts for individual differences and data qualityBehav. Res. Methods, 50 (2) (2018), pp. 834-852Google Scholar
  38. Saez de Urabain et al., 2015I.R. Saez de Urabain, M.H. Johnson, T.J. SmithGraFIX: a semiautomatic approach for parsing low- and high-quality eye-tracking dataBehav. Res. Methods, 47 (1) (2015), pp. 53-72CrossRefView Record in ScopusGoogle Scholar
  39. Salapatek and Kessen, 1966P. Salapatek, W. KessenVisual scanning of triangles by the human newbornJ. Exp. Child Psychol., 3 (1966), pp. 155-167ArticleDownload PDFView Record in ScopusGoogle Scholar
  40. Saslow, 1967M.G. SaslowEffects of components of displacement-step stimuli upon latency for saccadic eye movementJ. Opt. Soc. Am., 57 (8) (1967), pp. 1024-1029CrossRefView Record in ScopusGoogle Scholar
  41. Seemiller, 2018E.S. Seemiller, N.L. Port, T.R. CandyThe gaze stability of 4- to 10-week-old human infantsJ. Vis., 18 (August (8)) (2018), pp. 1-10View Record in ScopusGoogle Scholar
  42. Shic et al., 2008F. Shic, K. Chawarska, B. ScassellatiThe amorphous fixation measure revisited: with applications to autismProceedings of the 30th Annual Meeting of the Cognitive Science Society (2008)Google Scholar
  43. Shic et al., 2014F. Shic, S. Macari, K. ChawarskaSpeech disturbs face scanning in 6-month-old infants who develop autism spectrum disorderBiol. Psychiatry, 75 (3) (2014), pp. 231-237ArticleDownload PDFView Record in ScopusGoogle Scholar
  44. Van der Stigchel et al., 2017S. Van der Stigchel, R.S. Hessels, J.C. van Elst, C. KemnerThe disengagement of visual attention in the gap paradigm across adolescenceExp. Brain Res. (2017), pp. 1-8Google ScholarWass et al., 2013S.V. Wass, T.J. Smith, M.H. JohnsonParsing eye-tracking data of variable quality to provide accurate fixation duration estimates in infants and adultsBehav. Res. Methods, 45 (September (1)) (2013), pp. 229-250CrossRefView Record in ScopusGoogle Scholar
  45. Wass and Smith, 2014S.V. Wass, T.J. SmithIndividual differences in infant oculomotor behavior during the viewing of complex naturalistic scenesInfancy, 19 (4) (2014), pp. 352-384CrossRefView Record in ScopusGoogle Scholar
  46. Wass et al., 2014S.V. Wass, L. Forssman, J. LeppänenRobustness and precision: how data quality may influence key dependent variables in nfant eye-tracker analysesInfancy, 19 (July (5)) (2014), pp. 427-460CrossRefView Record in ScopusGoogle Scholar1