Author(s):
Nazaret Gómez-del-Río
Carina S. González-González
Pedro A. Toledo-Delgado
Vanesa Muñoz-Cruz
Francisco García-Peñalvo
Abstract:
At present, obesity and overweight are a global health epidemic. Traditional interventions for promoting healthy habits do not appear to be effective. However, emerging technological solutions based on wearables and mobile devices can be useful in promoting healthy habits. These applications generate a considerable amount of tracked activity data. Consequently, our approach is based on the quantified-self model for recommending healthy activities. Gamification can also be used as a mechanism to enhance personalization, increasing user motivation. This paper describes the quantified-self model and its data sources, the activity recommender system, and the PROVITAO App user experience model. Furthermore, it presents the results of a gamified program applied for three years in children with obesity and the process of evaluating the quantified-self model with experts. Positive outcomes were obtained in children’s medical parameters and health habits.
Documentation:
https://doi.org/10.3390/s20133778
References:
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Rimmer, J.H.; Vanderbom, K.A. A call to action: Building a translational inclusion team science in physical activity, nutrition, and obesity management for children with disabilities. Front. Public Health 2016, 4, 164. [Google Scholar] [CrossRef] [PubMed]
- Must, A.; Strauss, R.S. Risks and consequences of childhood and adolescent obesity. Int. J. Assoc. Study Obes. 1999, 23, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Pulgaron, E.R.; Delamater, A.M. Obesity and type 2 diabetes in children: Epidemiology and treatment. Curr. Diabetes Rep. 2014, 14, 508. [Google Scholar] [CrossRef] [PubMed]
- Nesta. The NHS in 2030: A People-Powered and Knowledge-Powered Health System. 2015. Available online: https://www.nesta.org.uk/report/the-nhs-in-2030-a-people-powered-and-knowledge-powered-health-system/ (accessed on 31 July 2018).
- Nogueira, T.F.D.; Zambon, M.P. Reasons for non-adherence to obesity treatment in children and adolescents. Rev. Paul. Pediatr. 2013, 31, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Nacke, L.E.; Deterding, C.S. The maturing of gamification research. Comput. Hum. Behav. 2017, 71, 450–454. [Google Scholar] [CrossRef]
- Gómez del Río, N.G.; González-González, C.S.; Gonzalez, R.M.; Adelantado, V.N.; Delgado, P.T.; Fleitas, Y.B. Gamified educational programme for childhood obesity. In Proceedings of the 2018 IEEE Global Engineering Education Conference (EDUCON), Santa Cruz de Tenerife, Canary Islands, Spain, 18–20 April 2018. [Google Scholar]
- Park, L.G.; Howie-Esquivel, J.; Dracup, K. A quantitative systematic review of the efficacy of mobile phone interventions to improve medication adherence. J. Adv. Nurs. 2014, 70, 1932–1953. [Google Scholar] [CrossRef]
- Pérez-Jover, V.; Sala-González, M.; Guilabert, M.; Mira, J.J. Mobile apps for increasing treatment adherence: Systematic review. J. Med. Internet Res. 2019, 21, e12505. [Google Scholar] [CrossRef]
- Ahmed, I.; Ahmad, N.S.; Ali, S.; Ali, S.; George, A.; Danish, H.S.; Uppal, E.; Soo, J.; Mobasheri, M.H.; King, D.; et al. Medication adherence apps: Review and content analysis. JMIR mHealth uHealth 2018, 6, e62. [Google Scholar] [CrossRef]
- Park, J.Y.E.; Li, J.; Howren, A.; Tsao, N.W.; A De Vera, M.; Jeong, E.; Patel, T. Mobile phone apps targeting medication adherence: Quality assessment and content analysis of user reviews. JMIR mHealth uHealth 2019, 7, e11919. [Google Scholar] [CrossRef]
- Lambert, E.; Harvey, L.A.; Avdalis, C.; Chen, L.W.; Jeyalingam, S.; Pratt, C.A.; Tatum, H.J.; Bowden, J.L.; Lucas, B.R. An app with remote support achieves better adherence to home exercise programs than paper handouts in people with musculoskeletal conditions: A randomised trial. J. Physiother. 2017, 63, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Voth, E.C.; Oelke, N.D.; Jung, M.E. A theory-based exercise app to enhance exercise adherence: A pilot study. JMIR mHealth uHealth 2016, 4, e62. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.R. The quantified self. HCI 2015, 15, 514–520. [Google Scholar]
- Marcengo, A.; Rapp, A. Visualization of human behavior data: The quantified self. In Innovative Approaches of Data Visualization and Visual Analytics; IGI GLOBAL: Hershey, PA, USA, 2013; pp. 236–265. [Google Scholar]
- Swan, M. Emerging patient-driven health care models: An examination of health social networks, consumer personalized medicine and quantified self-tracking. Int. J. Environ. Res. Public Health 2009, 6, 492–525. [Google Scholar] [CrossRef]
- Cena, F.; Likavec, S.; Rapp, A. Quantified self and modeling of human cognition. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 1021–1026. [Google Scholar]
- Maeyer, C.; Markopoulos, P. Exploring quantified self attitudes. In Proceedings of the HEALTHINF 2018, Funchal, Madeira, Portugal, 19–21 January 2018; pp. 253–260. [Google Scholar]
- De Vries, H.J.; Kooiman, T.J.M.; van Ittersum, M.W.; van Brussel, M.; de Groot, M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity 2016, 24, 2078–2091. [Google Scholar] [CrossRef]
- Ledger, D.; McCaffrey, D. Inside Wearables: How the Science of Human Behavior Change Offers the Secret to Long-Term Engagement; Endeavour Partners LLC: Cambridge, MA, USA, 2014; pp. 1–17. [Google Scholar]
- Hammond, T. Wearables Have a Dirty Little Secret: 50% of Users Lose Interest. 2014. Available online: http://www.techrepublic.com/article/wearables-have-a-dirty-little-secret-most- (accessed on 3 March 2020).
- Sharon, T. Self-tracking for health and the quantified self: Re-articulating autonomy, solidarity, and authenticity in an age of personalized healthcare. Philos. Technol. 2017, 30, 93–121. [Google Scholar] [CrossRef]
- Choe, E.U.; Lee, N.B.; Lee, B.; Pratt, W.; Kientz, J. Understanding quantified-selfers’ practices in collecting and exploring personal data. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; pp. 1143–1152. [Google Scholar] [CrossRef]
- Swan, M. The quantified self: Fundamental disruption in big data science and biological discovery. Big Data 2013, 1, 85–99. [Google Scholar] [CrossRef]
- Hoogendoorn, M.; Funk, B. Machine Learning for the quantified self—On the art of learning from sensory data. In Cognitive Systems Monographs 35; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–221. ISBN 978-3-319-66307-4. [Google Scholar]
- Yang, R.; Shin, E.; Newman, M.W.; Ackerman, M.S. When fitness trackers don’t ‘fit’. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing—UbiComp 15, Osaka, Japan, 7–11 September 2015. [Google Scholar]
- Gimpel, H.; Nißen, M.; Görlitz, R. Quantifying the quantified self: A study on the motivations of patients to track their own health. In Proceedings of the International Conference on Information Systems (ICIS 2013): Reshaping Society Through Information Systems Design, Milan, Italy, 15–18 December 2013. [Google Scholar]
- Bermingham-McDonogh, N. The Data Science of the Quantified Self; Vrije Universiteit Amsterdam: Amsterdam, The Nertherlands, 2015. [Google Scholar]
- Swan, M. Sensor mania! The internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 2012, 1, 217–253. [Google Scholar] [CrossRef]
- Shehab, A.; Ismail, A.; Osman, L.; Elhoseny, M.; El-Henawy, I.M. Quantified self using IoT wearable devices. In Proceedings of the AISI 2017, Cairo, Egypt, September 9–11 2017; pp. 820–831. [Google Scholar]
- Menychtas, A.; Papadimatos, D.; Tsanakas, P.; Maglogiannis, I. On the Integration of wearable sensors in IoT enabled mHealth and quantified-self applications. In Proceedings of the IMCL 2017, Thessaloníki, Greece, 30 November–1 December 2017; pp. 77–88. [Google Scholar]
- Chousiadas, D.; Menychtas, A.; Tsanakas, P.; Maglogiannis, I. Advancing quantified-self applications utilizing visual data analytics and the internet of things. In Proceedings of the AIAI (Workshops) 2018, Rhodes, Greece, 25–27 May 2018; pp. 263–274. [Google Scholar]
- Keskin, T. Introduction to the minitrack on internet of things: Providing services using smart devices, wearables, and quantified self. In Proceedings of the HICSS 2018, Hilton Waikoloa Village, HI, USA, 3–6 January 2018. [Google Scholar]
- Shin, D.; Biocca, F. Health experience model of personal informatics: The case of a quantified self. Comput. Hum. Behav. 2017, 69, 62–74. [Google Scholar] [CrossRef]
- Shin, H. Cross-platform user experience towards designing an inter-usable system. Int. J. Hum.-Comput. Interact. 2016, 32, 503–514. [Google Scholar] [CrossRef]
- Regnier, F.; Chauvel, L. Digital inequalities in the use of self-tracking diet and fitness apps: Interview study on the influence of social, economic, and cultural factors. JMIR mHealth uHealth 2018, 6, e101. [Google Scholar] [CrossRef] [PubMed]
- Williamson, B. The digitised future of physical education. In Transformative Learning and Teaching in Physical Education; Routledge: London, UK, 2017. [Google Scholar]
- Mehta, R. The self-quantification movement-implications for healthcare professionals. SelfCare 2011, 2, 87–92. [Google Scholar]
- Munson, S.A.; Consolvo, S. Exploring goal-setting, rewards, self-monitoring, and sharing to motivate physical activity. In Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; pp. 25–32. [Google Scholar]
- Hamari, J.; Hassan, L.; Dias, A. Gamification, quantified-self or social networking? Matching users’ goals with motivational technology. User Model. User-Adapt. Interact. 2018, 28, 35–74. [Google Scholar] [CrossRef]
- Didžiokaitė, G.; Saukko, P.; Greiffenhagen, C. The mundane experience of everyday calorie trackers: Beyond the metaphor of quantified self. New Media Soc. 2017, 20, 1470–1487. [Google Scholar] [CrossRef]
- Schaefer, S.E.; Van Loan, M.; German, J.B. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev. Chronic Dis. 2014, 11, E85. [Google Scholar] [CrossRef] [PubMed]
- Hswen, Y.; Murti, V.; Vormawor, A.A.; Bhattacharjee, R.; Naslund, J.A. Virtual avatars, gaming, and social media: Designing a mobile health app to help children choose healthier food options. J. Mob. Technol. Med. 2013, 2, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Pluim, C.; Gard, M. Physical education’s grand convergence: Fitnessgram®, big-data and the digital commerce of children’s health. Crit. Stud. Educ. 2016, 1–18. [Google Scholar] [CrossRef]
- Nafus, D. (Ed.) Quantified: Biosensing Technologies in Everyday Life; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Nafus, D.; Sherman, J. This one does not go up to 11: The quantified self movement as an alternative big data practice. Int. J. Commun. 2014, 8, 1784–1794. [Google Scholar]
- Whitson, J.R. Gaming the quantified self. Surveill. Soc. 2013, 11, 163–176. [Google Scholar] [CrossRef]
- Sarzotti, F.; Lombardi, I.; Rapp, A.; Marcengo, A.; Cena, F. Engaging users in self-reporting their data: A tangible interface for quantified self. In Proceedings of the International Conference on Universal Access in Human-Computer Interaction, Los Angeles, CA, USA, 2–7 August 2015; Springer: Cham, Switzerland, 2015; pp. 518–527. [Google Scholar]
- Marshall, T.; Champagne-Langabeer, T.; Castelli, D.; Hoelscher, D. Cognitive computing and eScience in health and life science research: Artificial intelligence and obesity intervention programs. Health Inf. Sci. Syst. 2017, 5, 13. [Google Scholar] [CrossRef]
- González, C.S.; Cairós-González, M.; Navarro-Adelantado, V. EMODIANA: Un instrumento para la evaluación subjetiva de emociones en niños y niñas. In Proceedings of the Actas Del XIV Congreso Internacional de Interacción Persona-Ordenador, Madrid, Spain, 17–20 September 2013; Volume 10. [Google Scholar]
- Reynolds, C.R.; Kamphaus, R.W. BASC: Sistema de Evaluación de la Conducta en Niños y Adolescentes; TEA: Madrid, Spain, 2004. [Google Scholar]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta-Bartrina, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Burke, R. Hybrid recommender systems: Survey and experiments. User Model. User-Adapt. Interact. 2002, 12, 331–370. [Google Scholar] [CrossRef]
- Hu, R.; Pu, P. Acceptance issues of personality-based recommender systems. In Proceedings of the Third ACM Conference on Recommender Systems, New York, NY, USA, 22–25 October 2009; ACM: New York, NY, USA, 2009; pp. 221–224. [Google Scholar]
- Pu, P.; Chen, L.; Hu, R. Evaluating recommender systems from the user’s perspective: Survey of the state of the art. User Model. User-Adapt. Interact. 2012, 22, 317–355. [Google Scholar] [CrossRef]
- Pu, P.; Chen, L.; Hu, R. A user-centric evaluation framework for recommender systems. In Proceedings of the Fifth ACM Conference on Recommender Systems, Chicago, IL, USA, 23–27 October 2011; ACM: New York, NY, USA, 2011; p. 157. [Google Scholar]
- Knijnenburg, B.P.; Willemsen, M.C.; Gantner, Z.; Soncu, H.; Newell, C. Explaining the user experience of recommender systems. User Model. User-Adapt. Interact. 2012, 22, 441–504. [Google Scholar] [CrossRef]
- Nielsen, J. Available online: https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/ (accessed on 15 March 2020).
- Ledford, J.R.; Gast, D.L. Single Case Research Methodology: Applications in Special Education and Behavioral Sciences; Routledge: London, UK, 2018. [Google Scholar]
- Fasano, G.; Franceschini, A. A multidimensional version of the Kolmogorov–Smirnov test. Mon. Not. R. Astron. Soc. 1987, 225, 155–170. [Google Scholar] [CrossRef]
- Fernández, C.; Lorenzo, H.; Vrotsou, K.; Aresti, U.; Rica, I.; Sánchez, E. Estudio de Crecimiento de Bilbao. Curvas y Tablas de Crecimiento; Faustino Orbegozo Foundation, 2011; Available online: https://www.fundacionorbegozo.com/wp-content/uploads/pdf/estudios_2011.pdf (accessed on 15 March 2020).
- Gómez del Río, N.; González, C.S.G.; Martín, R.; Navarro-Adelantado, V.; Toledo, P.; Fleitas, Y.D.C.B.; Marrero-Gordillo, N.; Armas, H.; García-Peñalvo, F.J. Treatment of children obesity and diabetes through gamification: A case of study. In Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, León, Spain,16–18 October 2019; ACM: New York, NY, USA, 2019; pp. 452–458. [Google Scholar]
- Reynolds, C.; Kamphaus, R.W. BASC-2. Behavior Assessment System for Children, 2nd ed.; Pearson: Bloomington, MN, USA, 2004. [Google Scholar]
- Del Río, N.G.; González-González, C.S.; Martín-González, R.; Navarro-Adelantado, V.; Delgado, P.A.T.; García-Peñalvo, F.J. Effects of a gamified educational program in the nutrition of children with obesity. J. Med Syst. 2019, 43, 198. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. The measurement of interrater agreement. In Statistical Methods for Rates and Proportions; John Wiley & Sons, Inc: Hoboken, NJ, USA, 1981; Volume 2, pp. 22–23. [Google Scholar]
- Altman, D.G. Mathematics for kappa. In Practical Statistics for Medical Research; Chapman & Hall: London, UK, 1991; pp. 406–407. [Google Scholar]