Author(s):

  • Yuhan Luo
  • Chi Young Oh
  • Beth St Jean
  • Eun Kyoung Choe

Abstract:

Background: Although the use of patient-generated data (PGD) in the optimization of patient care shows great promise, little is known about whether patients who track their PGD necessarily share the data with their clinicians. Meanwhile, health literacy—an important construct that captures an individual’s ability to manage their health and to engage with their health care providers—has often been neglected in prior studies focused on PGD tracking and sharing. To leverage the full potential of PGD, it is necessary to bridge the gap between patients’ data tracking and data sharing practices by first understanding the interrelationships between these practices and the factors contributing to these practices.

Objective: This study aims to systematically examine the interrelationships between PGD tracking practices, data sharing practices, and health literacy among individual patients.

Methods: We surveyed 109 patients at the time they met with a clinician at a university health center, unlike prior research that often examined patients’ retrospective experience after some time had passed since their clinic visit. The survey consisted of 39 questions asking patients about their PGD tracking and sharing practices based on their current clinical encounter. The survey also contained questions related to the participants’ health literacy. All the participants completed the survey on a tablet device. The onsite survey study enabled us to collect ecologically valid data based on patients’ immediate experiences situated within their clinic visit.

Results: We found no evidence that tracking PGD was related to self-reports of having sufficient information to manage one’s health; however, the number of data types participants tracked positively related to their self-assessed ability to actively engage with health care providers. Participants’ data tracking practices and their health literacy did not relate to their data sharing practices; however, their ability to engage with health care providers positively related to their willingness to share their data with clinicians in the future. Participants reported several benefits of, and barriers to, sharing their PGD with clinicians.

Conclusions: Although tracking PGD could help patients better engage with health care providers, it may not provide patients with sufficient information to manage their health. The gaps between tracking and sharing PGD with health care providers call for efforts to inform patients of how their data relate to their health and to facilitate efficient clinician-patient communication. To realize the full potential of PGD and to promote individuals’ health literacy, empowering patients to effectively track and share their PGD is important—both technologies and health care providers can play important roles.

Documentation:

https://doi.org/10.2196/18937

References:
  1. Zhu H, Colgan J, Reddy M, Choe EK. Sharing patient-generated data in clinical practices: an interview study. AMIA Annu Symp Proc 2016;2016:1303-1312 [FREE Full text] [Medline]
  2. Wood W, Bennett AV, Basch E. Emerging uses of patient generated health data in clinical research. Mol Oncol 2015 May;9(5):1018-1024 [FREE Full text] [CrossRef] [Medline]
  3. Luo Y, Liu P, Choe EK. Co-designing Food Trackers With Dietitians: Identifying Design Opportunities for Food Tracker Customization. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 2019 Presented at: CHI’19; May 9-10, 2019; Glasgow, UK. [CrossRef]
  4. Zhu H, Luo Y, Choe EK. Making Space for the Quality Care: Opportunities for Technology in Cognitive Behavioral Therapy for Insomnia. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017 Presented at: CHI’17; April 3-7, 2017; Denver, CO, USA. [CrossRef]
  5. Schroeder J, Hoffswell J, Chung C, Fogarty J, Munson S, Zia J. Supporting patient-provider collaboration to identify individual triggers using food and symptom journals. CSCW Conf Comput Support Coop Work 2017 Feb 25;2017:1726-1739 [FREE Full text] [CrossRef] [Medline]
  6. Chung C, Cook J, Bales E, Zia J, Munson SA. More than telemonitoring: health provider use and nonuse of life-log data in irritable bowel syndrome and weight management. J Med Internet Res 2015 Aug 21;17(8):e203 [FREE Full text] [CrossRef] [Medline]
  7. Kim Y, Heo E, Lee H, Ji S, Choi J, Kim J, et al. Prescribing 10,000 Steps Like Aspirin: Designing a Novel Interface for Data-driven Medical Consultation. In: Conference on Human Factors in Computing Systems – Proceedings Internet. New York, NY. 2017 Presented at: CHI’17; April 7-10, 2017; Denver, CO, USA   URL: https://dl.acm.org/doi/10.1145/3025453.3025570 [CrossRef]
  8. West P, Giordano R, Van KM, Shadbolt N. Conference on Human Factors in Computing Systems. 2016 Presented at: CHI’16; May 5-7, 2016; San Jose, CA, USA   URL: https://dl.acm.org/doi/10.1145/2858036.2858445 [CrossRef]
  9. Nutbeam D. Health promotion glossary. Health Promot 1986 May;1(1):113-127. [CrossRef] [Medline]
  10. Nutbeam D. The evolving concept of health literacy. Soc Sci Med 2008 Dec;67(12):2072-2078. [CrossRef] [Medline]
  11. Osborne RH, Batterham RW, Elsworth GR, Hawkins M, Buchbinder R. The grounded psychometric development and initial validation of the health literacy questionnaire (HLQ). BMC Public Health 2013 Jul 16;13:658 [FREE Full text] [CrossRef] [Medline]
  12. Klasnja P, Kendall L, Pratt W, Blondon K. Long-term engagement with health-management technology: a dynamic process in diabetes. AMIA Annu Symp Proc 2015;2015:756-765 [FREE Full text] [Medline]
  13. Chung C, Dew K, Cole A, Zia J, Fogarty J, Kientz J, et al. Boundary Negotiating Artifacts in Personal Informatics: Patient-provider Collaboration With Patient-generated Data. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing. 2016 Presented at: ACM’16; June 2-5, 2016; San Francisco, CA, USA. [CrossRef]
  14. Choe E, Lee N, Lee B, Pratt W, Kientz J. Understanding Quantified-selfers? Practices in Collecting and Exploring Personal Data. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 2014 Presented at: SIGCHI’14; June 3-6, 2014; Toronto, Canada. [CrossRef]
  15. Choe EK, Lee B, Andersen TO, Wilcox L, Fitzpatrick G. Harnessing the power of patient-generated data. IEEE Pervasive Comput 2018 Apr;17(2):50-56. [CrossRef]
  16. Choe EK, Lee B, Zhu H, Riche N. Understanding Self-reflection: How People Reflect on Personal Data Through Visual Data Exploration. In: Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare. 2017 Presented at: EAI’17; June 1-5, 2017; Barcelona, Spain. [CrossRef]
  17. Choe EK, Lee B, Kay M, Pratt W, Kientz J. SleepTight: Low-burden, Self-monitoring Technology for Capturing and Reflecting on Sleep Behaviors. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. 2015 Presented at: ACM’15; July 16-18, 2015; Osaka, Japan. [CrossRef]
  18. Chiauzzi E, Rodarte C, DasMahapatra P. Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med 2015 Apr 9;13:77 [FREE Full text] [CrossRef] [Medline]
  19. Ishikawa H, Yano E. Patient health literacy and participation in the health-care process. Health Expect 2008 Jun;11(2):113-122 [FREE Full text] [CrossRef] [Medline]
  20. 23 and Me.   URL: https://www.23andme.com/ [accessed 2020-11-23]
  21. Ayobi A, Marshall P, Cox A, Chen Y. Quantifying the Body and Caring for the Mind: Self-tracking in Multiple Sclerosis. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017 Presented at: CHI’17; August 3-6, 2017; Denver, CO, USA. [CrossRef]
  22. Karkar R, Schroeder J, Epstein D, Pina L, Scofield J, Fogarty J, et al. TummyTrials: a Feasibility Study of Using Self-experimentation to Detect Individualized Food Triggers. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017 Presented at: CHI’17; May 1-7, 2017; Denver, CO, USA. [CrossRef]
  23. Eikey EV. It’s Definitely Been a Journey?: a Qualitative Study on How Women With Eating Disorders Use Weight Loss Apps. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 2017 Presented at: CHI’17; May 1-7, 2017; Denver, CO, USA. [CrossRef]
  24. Eikey EV. Providers’perceptions of the Impact of Weight Loss Apps on Users With Eating Disorders. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 2016 Presented at: CHI’16; June 23-26, 2016; San Jose, CA, USA. [CrossRef]
  25. Garrity TF. Medical compliance and the clinician-patient relationship: a review. Soc Sci Med Part E: Med Psychol 1981 Aug;15(3):215-222. [CrossRef]
  26. Woods SS, Schwartz E, Tuepker A, Press NA, Nazi KM, Turvey CL, et al. Patient experiences with full electronic access to health records and clinical notes through the My HealtheVet Personal Health Record Pilot: qualitative study. J Med Internet Res 2013 Mar 27;15(3):e65 [FREE Full text] [CrossRef] [Medline]
  27. Sands DZ, Wald JS. Transforming health care delivery through consumer engagement, health data transparency, and patient-generated health information. Yearb Med Inform 2018 Mar 5;23(1):170-176. [CrossRef]
  28. West P, Van Kleek M, Giordano R, Weal M, Shadbolt N. Information quality challenges of patient-generated data in clinical practice. Front Public Health 2017;5:284 [FREE Full text] [CrossRef] [Medline]
  29. Jo DM. Issue Brief: Patient-Generated Health DataHealth IT. Office of the National Coordinator for Health Information Technology. 2013.   URL: https://www.healthit.gov/sites/default/files/pghd_brief_final122013.pdf [accessed 2020-11-23]
  30. Patient-Generated Health Information Technical Expert Panel. Department Services, of Health and Human. 2013.   URL: https://www.healthit.gov/sites/default/files/pghi_tep_finalreport121713.pdf [accessed 2020-11-23]
  31. Ostherr K, Borodina S, Bracken RC, Lotterman C, Storer E, Williams B. Trust and privacy in the context of user-generated health data. Big Data Soc 2017 Apr 17;4(1):205395171770467. [CrossRef]
  32. Halamka JD, Mandl KD, Tang PC. Early experiences with personal health records. J Am Med Informatics Assoc 2008 Jan 1;15(1):1-7. [CrossRef]
  33. Carmona RH. Health literacy: a national priority. J Gen Intern Med 2006 Aug;21(8):803. [CrossRef]
  34. Cho YI, Lee SD, Arozullah AM, Crittenden KS. Effects of health literacy on health status and health service utilization amongst the elderly. Soc Sci Med 2008 Apr;66(8):1809-1816. [CrossRef] [Medline]
  35. Noblin A, Wan T, Fottler M. The impact of health literacy on a patient’s decision to adopt a personal health record. Perspect Health Inf Manag 2012;9:1-13 [FREE Full text] [Medline]
  36. St Leger L. Schools, health literacy and public health: possibilities and challenges. Health Promot Int 2001 Jun;16(2):197-205. [CrossRef] [Medline]
  37. Williams MV, Davis T, Parker R, Weiss B. The role of health literacy in patient-physician communication. Fam Med 2002 May;34(5):383-389. [Medline]
  38. Ishikawa H, Yano E, Fujimori S, Kinoshita M, Yamanouchi T, Yoshikawa M, et al. Patient health literacy and patient-physician information exchange during a visit. Fam Pract 2009 Dec;26(6):517-523. [CrossRef] [Medline]
  39. Jacobs RJ, Lou JQ, Ownby RL, Caballero J. A systematic review of eHealth interventions to improve health literacy. Health Informatics J 2016 Jun;22(2):81-98 [FREE Full text] [CrossRef] [Medline]
  40. Parker RM, Baker DW, Williams MV, Nurss JR. The test of functional health literacy in adults. J Gen Intern Med 1995 Oct;10(10):537-541. [CrossRef]
  41. Norman CD, Skinner HA. eHEALS: the eHealth literacy scale. J Med Internet Res 2006 Nov 14;8(4):e27 [FREE Full text] [CrossRef] [Medline]
  42. Friis K, Lasgaard M, Osborne R, Maindal H. Gaps in understanding health and engagement with healthcare providers across common long-term conditions: a population survey of health literacy in 29,473 Danish citizens. BMJ Open 2016 Jan 14;6(1):e009627 [FREE Full text] [CrossRef] [Medline]
  43. Hawkins M, Gill SD, Batterham R, Elsworth GR, Osborne RH. The Health Literacy Questionnaire (HLQ) at the patient-clinician interface: a qualitative study of what patients and clinicians mean by their HLQ scores. BMC Health Serv Res 2017 Apr 27;17(1):309 [FREE Full text] [CrossRef] [Medline]
  44. Cohen DJ, Keller SR, Hayes GR, Dorr DA, Ash JS, Sittig DF. Integrating patient-generated health data into clinical care settings or clinical decision-making: lessons learned from project healthdesign. JMIR Hum Factors 2016 Oct 19;3(2):e26 [FREE Full text] [CrossRef] [Medline]
  45. Nittas V, Lun P, Ehrler F, Puhan MA, Mütsch MA. Electronic Patient-Generated Health Data to Facilitate Disease Prevention and Health Promotion: Scoping Review. J Med Internet Res 2019 Oct 14;21(10):e13320 [FREE Full text] [CrossRef] [Medline]
  46. Qualtrics. 2019.   URL: https://www.qualtrics.com/ [accessed 2020-11-23]
  47. Porter K, Chen Y, Estabrooks P, Noel L, Bailey A, Zoellner J. Using teach-back to understand participant behavioral self-monitoring skills across health literacy level and behavioral condition. J Nutr Educ Behav 2016 Jan;48(1):20-6.e1 [FREE Full text] [CrossRef] [Medline]
  48. Zoellner JM, Hedrick VE, You W, Chen Y, Davy BM, Porter KJ, et al. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: a randomized-controlled trial. Int J Behav Nutr Phys Act 2016;13():38. [CrossRef] [Medline]
  49. Vamos S, Klein K. Our self-tracking movement and health literacy: are we really making every moment count? Glob Health Promot 2018 Jun;25(2):85-89. [CrossRef] [Medline]
  50. MyFitnessPal.   URL: https://www.myfitnesspal.com/ [accessed 2020-11-23]
  51. Ferguson LA. Implementing a video education program to improve health literacy. J Nurse Pract 2012 Sep;8(8):e17-e22. [CrossRef]
  52. Yli-Kauhaluoma S, Pantzar M. Seeking connectivity to everyday health and wellness experiences: specificities and consequences of connective gaps in self-tracking data. Digit Health 2018;4:2055207618779714 [FREE Full text] [CrossRef] [Medline]
  53. Choe EK. Design of Persuasive Technologies for Healthy Sleep Behavior. In: Proceedings of the 13th international conference on Ubiquitous computing. 2011 Presented at: UbiComp’11; April 7-9, 2011; Beijing, China. [CrossRef]
  54. Liang Z, Alberto M, Martell C. Framing Self-quantification for Individual-level Preventive Health Care. In: Proceedings of the International Conference on Health Informatics. 2015 Presented at: CHI’15; May 7-9, 2015; Lisbon, Portugal. [CrossRef]
  55. Verdezoto N, Grönvall E. On preventive blood pressure self-monitoring at home. Cogn Tech Work 2015 Nov 23;18(2):267-285. [CrossRef]
  56. den Hoed M, Eijgelsheim M, Esko T, Brundel BJJM, Peal DS, Evans DM. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat Genet 2013 Jun;45(6):621-631 [FREE Full text] [CrossRef] [Medline]
  57. Fitbit.   URL: https://www.fitbit.com/ [accessed 2020-11-23]
  58. Choe EK, Abdullah S, Rabbi M, Thomaz E, Epstein DA, Cordeiro F, et al. Semi-automated tracking: a balanced approach for self-monitoring applications. IEEE Pervasive Comput 2017 Jan;16(1):74-84. [CrossRef]
  59. Kim Y, Jeon JH, Lee B, Choe EK, Seo J. OmniTrack. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017 Sep 11;1(3):1-28. [CrossRef]
  60. West P, Van KM, Giordano R, Weal M, Shadbolt N. Common Barriers to the Use of Patient-generated Data Across Clinical Settings. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018 Presented at: CHI’18; July 17-19, 2018; Montreal, Canada. [CrossRef]
  61. Use Fitbit’s New Wellness Report To Have A More Informed Conversation With Your Doctor.   URL: https://blog.fitbit.com/fitbit-premium-wellness-report/ [accessed 2020-11-23]
  62. Lose It!.   URL: https://www.loseit.com/ [accessed 2020-11-23]
  63. Lupton D. ‘I just want it to be done, done, done!’ food tracking apps, affects, and agential capacities. MTI 2018 May 23;2(2):29. [CrossRef]
  64. Morris RL, Soh S, Hill KD, Buchbinder R, Lowthian JA, Redfern J, et al. Measurement properties of the Health Literacy Questionnaire (HLQ) among older adults who present to the emergency department after a fall: a Rasch analysis. BMC Health Serv Res 2017 Aug 29;17(1):605 [FREE Full text] [CrossRef] [Medline]
  65. Cutilli CC, Bennett IM. Understanding the health literacy of America. Orthopaedic Nursing 2009;28(1):27-32. [CrossRef]
  66. Debussche X, Lenclume V, Balcou-Debussche M, Alakian D, Sokolowsky C, Ballet D, et al. Characterisation of health literacy strengths and weaknesses among people at metabolic and cardiovascular risk: Validity testing of the Health Literacy Questionnaire. SAGE Open Med 2018;6:2050312118801250 [FREE Full text] [CrossRef] [Medline]
  67. Brabers AE, Rademakers JJ, Groenewegen PP, van Dijk L, de Jong JD. What role does health literacy play in patients’ involvement in medical decision-making? PLoS One 2017;12(3):e0173316 [FREE Full text] [CrossRef] [Medline]
  68. Figueiredo M, Caldeira C, Chen Y, Zheng K. Routine self-tracking of health: reasons, facilitating factors, and the potential impact on health management practices. AMIA Annu Symp Proc 2017;2017:706-714. [Medline]