Author(s):

Vini Vijayan

James P. Connolly

Joan Condell

Nigel McKelves

Philip Gardiner

Abstract:

Wearable sensor technology has gradually extended its usability into a wide range of well-known applications. Wearable sensors can typically assess and quantify the wearer’s physiology and are commonly employed for human activity detection and quantified self-assessment. Wearable sensors are increasingly utilised to monitor patient health, rapidly assist with disease diagnosis, and help predict and often improve patient outcomes. Clinicians use various self-report questionnaires and well-known tests to report patient symptoms and assess their functional ability. These assessments are time consuming and costly and depend on subjective patient recall. Moreover, measurements may not accurately demonstrate the patient’s functional ability whilst at home. Wearable sensors can be used to detect and quantify specific movements in different applications. The volume of data collected by wearable sensors during long-term assessment of ambulatory movement can become immense in tuple size. This paper discusses current techniques used to track and record various human body movements, as well as techniques used to measure activity and sleep from long-term data collected by wearable technology devices.

Documentation:

https//:doi.org/10.3390/s21165589

References:

1. Pantelopoulos A., Bourbakis N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev. 2009;40:1–12. doi: 10.1109/TSMCC.2009.2032660. [CrossRef] [Google Scholar]2. Liu S. Wearable Technology–Statistics & Facts Statista. [(accessed on 3 August 2021)];2019 Available online: www.statista.com/topics/1556/wearable-technology/3. Frost B. Market Research Report. Strategy R. 2014;7215:1–31. [Google Scholar]4. Pando A. Wearable Health Technologies and Their Impact on the Health Industry. Forbes. [(accessed on 31 May 2021)];2019 Available online: www.forbes.com/sites/forbestechcouncil/2019/05/02/wearable-health-technologies-and-their-impact-on-the-health-industry/#4eac185f3af5.5. Tankovska H. Global Connected Wearable Devices 2016–2022 Statista. Statista. [(accessed on 5 February 2021)];2020 Available online: www.statista.com/statistics/487291/global-connected-wearable-devices/6. Connolly J. Wearable Rehabilitative Technology for the Movement Measurement of Patients with Arthritis. Ulster University, February 2015. [(accessed on 3 August 2021)]; Available online: https://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.675471.7. Song M.-S., Kang S.-G., Lee K.-T., Kim J. Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines. 2019;10:879. doi: 10.3390/mi10120879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. Massaroni C., Saccomandi P., Schena E. Medical Smart Textiles Based on Fiber Optic Technology: An Overview. J. Funct. Biomater. 2015;6:204–221. doi: 10.3390/jfb6020204. [PMC free article] [PubMed] [CrossRef] [Google Scholar]9. Jouffroy R., Jost D., Prunet B. Prehospital pulse oximetry: A red flag for early detection of silent hypoxemia in COVID-19 patients. Crit. Care. 2020;24:1–2. doi: 10.1186/s13054-020-03036-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. Best J. Wearable technology: Covid-19 and the rise of remote clinical monitoring. BMJ. 2021;372:n413. doi: 10.1136/bmj.n413. [PubMed] [CrossRef] [Google Scholar]11. Vijayan V., McKelvey N., Condell J., Gardiner P., Connolly J. Implementing Pattern Recognition and Matching techniques to automatically detect standardized functional tests from wearable technology; Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC); Letterkenny, Ireland. 11–12 June 2020; [CrossRef] [Google Scholar]12. Majumder S., Mondal T., Deen M.J. Wearable Sensors for Remote Health Monitoring. Sensors. 2017;17:130. doi: 10.3390/s17010130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]13. Sun H., Zhang Z., Hu R.Q., Qian Y. Wearable Communications in 5G: Challenges and Enabling Technologies. IEEE Veh. Technol. Mag. 2018;13:100–109. doi: 10.1109/MVT.2018.2810317. [CrossRef] [Google Scholar]14. Schrader L., Toro A.V., Konietzny S., Rüping S., Schäpers B., Steinböck M., Krewer C., Müller F., Güttler J., Bock T. Advanced Sensing and Human Activity Recognition in Early Intervention and Rehabilitation of Elderly People. J. Popul. Ageing. 2020;13:139–165. doi: 10.1007/s12062-020-09260-z. [CrossRef] [Google Scholar]15. Cha J., Kim J., Kim S. Hands-free user interface for AR/VR devices exploiting wearer’s facial gestures using unsupervised deep learning. Sensors. 2019;19:4441. doi: 10.3390/s19204441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Sensoria Fitness: Motion and Activity Tracking Smart Clothing for Sports and Fitness. [(accessed on 6 August 2021)];2021 Available online: https://store.sensoriafitness.com/17. TEKSCAN Gait Mat|HR Mat|Tekscan. Photo Courtesy of Tekscan™, Inc. [(accessed on 4 July 2021)]; Available online: www.tekscan.com/products-solutions/systems/hr-mat.18. Image Courtesy 5DT.com; DT Technologies Home—5DT. [(accessed on 29 July 2020)]; Available online: https://5dt.com/19. NEXGEN NexGen Ergonomics–Products–Biometrics–Goniometers and Torsiometers. [(accessed on 3 August 2021)]; Available online: www.nexgenergo.com/ergonomics/biosensors.html.20. Bell . J. Wearable Health Monitoring Systems. Technical Report; Nyx Illuminated Clothing Company; Culver City, CA, USA: 2019. p. 218857. [Google Scholar]21. Lee J., Kim D., Ryoo H.-Y., Shin B.-S. Sustainable Wearables: Wearable Technology for Enhancing the Quality of Human Life. Sustainability. 2016;8:466. doi: 10.3390/su8050466. [CrossRef] [Google Scholar]22. Hurdles C. Applied Clinical Trials- Your Peer-Reviewed Guide to Gobal Clinical Trials Management. [(accessed on 3 August 2021)];2017 Available online: https://cdn.sanity.io/files/0vv8moc6/act/346a82766960a17da2099b5f1268d0efba485d2a.pdf.23. Grimm B., Bolink S. Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Rev. 2016;1:112–120. doi: 10.1302/2058-5241.1.160022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Dhairya K. Introduction to Data Preprocessing in Machine Learning. [(accessed on 3 August 2021)];2018 Available online: https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9.25. Mavor M.P., Ross G.B., Clouthier A.L., Karakolis T., Graham R.B. Validation of an IMU Suit for Military-Based Tasks. Sensors. 2020;20:4280. doi: 10.3390/s20154280. [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. Balsa A., Carmona L., González-Alvaro I., Belmonte M.A., Tena X., Sanmartí R. Value of Disease Activity Score 28 (DAS28) and DAS28-3 Compared to American College of Rheumatology-Defined Remission in Rheumatoid Arthritis. J. Rheumatol. 2004;31:40–46. [PubMed] [Google Scholar]27. Callmer J. Master’s Thesis. Linköping University Electronic Press; Linköping, Sweden: 2016. Autonomous Localization in Unknown Environments; p. 1520. [Google Scholar]28. Estevez P., Bank J., Porta M., Wei J., Sarro P., Tichem M., Staufer U. 6 DOF force and torque sensor for micro-manipulation applications. Sens. Actuators A Phys. 2012;186:86–93. doi: 10.1016/j.sna.2012.02.037. [CrossRef] [Google Scholar]29. Pandey A., Mazumdar C., Ranganathan R., Tripathi S., Pandey D., Dattagupta S. Transverse vibrations driven negative thermal expansion in a metallic compound GdPd3B0.25C0.75. Appl. Phys. Lett. 2008;92:261913. doi: 10.1063/1.2953175. [CrossRef] [Google Scholar]30. Sparkfun Accelerometer, Gyro and IMU Buying Guide–SparkFun Electronics. [(accessed on 3 August 2021)];2016 :1. Available online: www.sparkfun.com/pages/accel_gyro_guide.31. On Board Mpu9255 10 Axial Inertial Navigation Module10 Dof Imu Sensor(b)gyroscope Acceleration Sensor–Buy Mpu9255 10 Axial Inertial Navigation Module, 10 Dof Imu Sensor, Gyroscope Acceleration Sen. [(accessed on 11 May 2021)]; Available online: www.alibaba.com/product-detail/on-board-MPU9255-10-axial-inertial_60838848689.html.32. CANAL GEOMATICS IMU Accuracy Error Definitions Canal Geomatics. [(accessed on 21 February 2021)]; Available online: http://www.canalgeomatics.com/33. Ahmed H., Tahir M. Improving the Accuracy of Human Body Orientation Estimation with Wearable IMU Sensors. IEEE Trans. Instrum. Meas. 2017;66:535–542. doi: 10.1109/TIM.2016.2642658. [CrossRef] [Google Scholar]34. Guner U., Canbolat H., Unluturk A. Design and implementation of adaptive vibration filter for MEMS based low cost IMU; Proceedings of the 2015 9th International Conference on Electrical and Electronics Engineering (ELECO); Bursa, Turkey. 26–28 November 2015; pp. 130–134. [CrossRef] [Google Scholar]35. Paina G.P., Gaydou D., Redolfi J., Paz C., Canali L. Experimental comparison of kalman and complementary filter for attitude estimation. Proc. AST. 2011:205–215. [Google Scholar]36. De Arriba-Pérez F., Caeiro-Rodríguez M., Santos-Gago J.M. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios. Sensors. 2016;16:1538. doi: 10.3390/s16091538. [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. Iman K., Al-Azwani H. Integration of Wearable Technologies into Patient’s Electronic Medical Records. Qual. Prim. Care. 2016;24:151–155. [Google Scholar]38. Lawton E.B. ADL and IADL treatment; Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–186. doi: 10.1093/geront/9.3_Part_1.179. [PubMed] [CrossRef] [Google Scholar]39. Camp N., Lewis M., Hunter K., Johnston J., Zecca M., Di Nuovo A., Magistro D. Technology Used to Recognize Activities of Daily Living in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health. 2020;18:163. doi: 10.3390/ijerph18010163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Lee Y., Kim M., Lee Y., Kwon J., Park Y.-L., Lee D. Wearable Finger Tracking and Cutaneous Haptic Interface with Soft Sensors for Multi-Fingered Virtual Manipulation. IEEE/ASME Trans. Mechatron. 2018;24:67–77. doi: 10.1109/TMECH.2018.2872570. [CrossRef] [Google Scholar]41. Sayem A.S.M., Teay S.H., Shahariar H., Fink P.L., Albarbar A. Review on Smart Electro-Clothing Systems (SeCSs) Sensors. 2020;20:587. doi: 10.3390/s20030587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Xsens Home Xsens 3D Motion Tracking. [(accessed on 11 May 2021)];2015 Available online: www.xsens.com/43. Caeiro-Rodríguez M., Otero-González I., Mikic-Fonte F.A., Llamas-Nistal M. A Systematic Review of Commercial Smart Gloves: Current Status and Applications. Sensors. 2021;21:2667. doi: 10.3390/s21082667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Smart Glove Neofect. [(accessed on 28 May 2021)]; Available online: www.neofect.com/us/smart-glove.45. Shen Z., Yi J., Li X., Lo M.H.P., Chen M.Z.Q., Hu Y., Wang Z. A soft stretchable bending sensor and data glove applications. Robot. Biomimetics. 2016;3:1–8. doi: 10.1186/s40638-016-0051-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]46. Henderson J., Condell J., Connolly J., Kelly D., Curran K. Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors. 2021;21:1576. doi: 10.3390/s21051576. [PMC free article] [PubMed] [CrossRef] [Google Scholar]47. De Pasquale G. Glove-based systems for medical applications: Review of recent advancements. J. Text. Eng. Fash. Technol. 2018;4:1. doi: 10.15406/jteft.2018.04.00153. [CrossRef] [Google Scholar]48. Djurić-Jovičić M., Jovičić N.S., Roby-Brami A., Popović M.B., Kostić V.S., Djordjević A.R. Quantification of Finger-Tapping Angle Based on Wearable Sensors. Sensors. 2017;17:203. doi: 10.3390/s17020203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Shyr T.-W., Shie J.-W., Jiang C.-H., Li J.-J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors. 2014;14:4050–4059. doi: 10.3390/s140304050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Mjøsund H.L., Boyle E., Kjaer P., Mieritz R.M., Skallgård T., Kent P. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes. BMC Musculoskelet. Disord. 2017;18:1–9. doi: 10.1186/s12891-017-1489-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]51. Ortiz M., Juan R., Val S.L. Reliability and Concurrent Validity of the Goniometer-Pro App vs. a Universal Goniometer in determining Passive Flexion of Knee. Int. J. Comput. Appl. 2017;173:30–34. [Google Scholar]52. Totaro M., Poliero T., Mondini A., Lucarotti C., Cairoli G., Ortiz J., Beccai L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors. 2017;17:2314. doi: 10.3390/s17102314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]53. Veari Presents Fineck Smart Wearable Device for Neck Health. [(accessed on 28 May 2021)]; Available online: www.designboom.com/technology/veari-fineck-smart-wearable-device-neck-health-11-25-2014/54. Lo Presti D., Carnevale A., D’Abbraccio J., Massari L., Massaroni C., Sabbadini R., Zaltieri M., Bravi M., Sterzi S., Schena E. A Multi-Parametric Wearable System to Monitor Neck Computer Workers. Sensors. 2020;20:536. doi: 10.3390/s20020536. [PMC free article] [PubMed] [CrossRef] [Google Scholar]55. BTS Products Applications_BTS Bioengineering. [(accessed on 11 May 2021)]; Available online: https://www.btsbioengineering.com/applications/56. ViMove2 Analyse Patient Movement & Muscle Activity–DorsaVi EU. [(accessed on 10 May 2021)]; Available online: www.dorsavi.com/uk/en/vimove/57. Amazon’s New Fitness Tracker Halo Will Monitor Your Tone of Voice—Quartz. [(accessed on 18 May 2021)]; Available online: https://qz.com/1897411/amazons-new-fitness-tracker-halo-will-monitor-your-tone-of-voice/58. Schätz M., Procházka A., Kuchyňka J., Vyšata O. Sleep Apnea Detection with Polysomnography and Depth Sensors. Sensors. 2020;20:1360. doi: 10.3390/s20051360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]59. Liebling S., Langhan M. Pulse Oximetry. Nurs. Times. 2018:98–102. doi: 10.1093/med/9780190659110.003.0015. [CrossRef] [Google Scholar]60. Aliverti A. Wearable technology: Role in respiratory health and disease. Breathe. 2017;13:e27–e36. doi: 10.1183/20734735.008417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]61. Kumar H.S. Wearable Technology in Combination with Diabetes. Int. J. Res. Eng. Sci. Manag. 2019;2:1–4. [Google Scholar]62. Baig M.M. Ph.D. Thesis. Auckland University of Technology; Auckland, New Zealand: 2017. Early Detection and Self-Management of Long-Term Conditions Using Wearable Technologies. [Google Scholar]63. Nishiguchi S., Ito H., Yamada M., Yoshitomi H., Furu M., Ito T., Shinohara A., Ura T., Okamoto K., Aoyama T. Self-Assessment Tool of Disease Activity of Rheumatoid Arthritis by Using a Smartphone Application. Telemed. e-Health. 2014;20:235–240. doi: 10.1089/tmj.2013.0162. [PubMed] [CrossRef] [Google Scholar]64. Managing Rheumatoid Arthritis–NPS MedicineWise. [(accessed on 8 July 2021)]; Available online: www.nps.org.au/consumers/managing-rheumatoid-arthritis.65. How Is a Person Affected by Ankylosing Spondylitis (AS)_ _ SPONDYLITIS. [(accessed on 3 August 2021)]; Available online: https://spondylitis.org/about-spondylitis/possible-complications/66. Swinnen T.W., Milosevic M., Van Huffel S., Dankaerts W., Westhovens R., De Vlam K. Instrumented BASFI (iBASFI) Shows Promising Reliability and Validity in the Assessment of Activity Limitations in Axial Spondyloarthritis. J. Rheumatol. 2016;43:1532–1540. doi: 10.3899/jrheum.150439. [PubMed] [CrossRef] [Google Scholar]67. Irons K., Harrison H., Thomas A., Martindale J. Ankylosing Spondylitis (Axial Spondyloarthritis). The Bath Indices. [(accessed on 3 August 2021)];2016 :1. Available online: www.nass.co.uk.68. Annoni F. The health assessment questionnaire. J. Petrol. 2000;369:1689–1699. doi: 10.1017/cbo9781107415324.004. [CrossRef] [Google Scholar]69. Rawassizadeh R., Momeni E., Dobbins C., Mirza-Babaei P., Rahnamoun R. Lesson Learned from Collecting Quantified Self Information via Mobile and Wearable Devices. J. Sens. Actuator Netw. 2015;4:315–335. doi: 10.3390/jsan4040315. [CrossRef] [Google Scholar]70. Çiçek M. Wearable Technologies and Its Future Applications. Int. J. Electr. Electron. Data Commun. 2015;3:45–50. [Google Scholar]71. Piwek L., Ellis D., Andrews S., Joinson A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016;13:e1001953. doi: 10.1371/journal.pmed.1001953. [PMC free article] [PubMed] [CrossRef] [Google Scholar]72. Whitney L. 21 Tips Every Apple Watch Owner Should Know PCMag. PCMag. [(accessed on 1 June 2021)];2020 Available online: www.pcmag.com/how-to/20-tips-every-apple-watch-owner-should-know.73. Fitbit Sense In-Depth Review_All the Data Without the Clarity_DC Rainmaker. [(accessed on 1 June 2021)]; Available online: www.dcrainmaker.com/2020/09/fitbit-sense-in-depth-review-all-the-data-without-the-clarity.html.74. Stein S. Samsung Gear 2 Review_A Smartwatch that Tries to Be Everything–CNET. [(accessed on 1 June 2021)]; Available online: www.cnet.com/reviews/samsung-gear-2-review/75. [(accessed on 3 August 2021)]; Available online: https://www.google.com/search?client=firefox-b-d&q=smartdevice-samsung-gear-s-um+76. Activity W., Tracker S., Guide Q.S. Wireless Activity and Sleep Tracker. [(accessed on 3 August 2021)]; Available online: https://uk.pcmag.com/migrated-99802-smartwatches/122576/21-tips-every-apple-watch-owner-should-know.77. PEBBLE-WATCH BLUETOOTH Watch User Manual Pebble Technology. [(accessed on 1 June 2021)]; Available online: https://fccid.io/RGQ-PEBBLE-WATCH/User-Manual/user-manual-1868584.78. Xiaomi Mi Band 6 User Manual Download (English Language) [(accessed on 21 July 2021)]; Available online: www.smartwatchspecifications.com/xiaomi-mi-band-6-user-manual/79. Mannion P. Teardown: Misfit Shine 2 and the Art of Power Management. EDN. [(accessed on 1 June 2021)]; Available online: https://www.edn.com/teardown-misfit-shine-2-and-the-art-of-power-management/80. Apps and Fitness–Sony Smartwatch 3 Review TechRadar. [(accessed on 1 June 2021)]; Available online: www.techradar.com/reviews/sony-smartwatch-3/4.81. Bennett B. Fitbit Flex Review_A Most Versatile, Feature-Packed Tracker–CNET. [(accessed on 1 June 2021)];2016 Available online: www.cnet.com/reviews/fitbit-flex-review/82. ONcoach 100. [(accessed on 1 June 2021)]; Available online: https://support.decathlon.co.uk/oncoach-100.83. ActiGraph Link. [(accessed on 1 June 2021)]; Available online: https://actigraphcorp.com/actigraph-link/84. Garmin VivoSmart HR+ [(accessed on 3 August 2021)]; Available online: https://www.expansys.jp/garmin-vivosmart-hr-regular-size-black-taiwan-spec-291780/85. MotionNode Bus Wearable Sensor Network. [(accessed on 22 July 2021)]; Available online: www.motionnode.com/bus.html.86. Wilson S., Laing R.M. Wearable Technology: Present and Future; Proceedings of the 91st World Conference; Leeds, UK. 23–26 July 2018. [Google Scholar]87. Bohannon R.W., Bubela D.J., Magasi S.R., Wang Y.-C., Gershon R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet. Exerc. Sci. 2010;18:235–240. doi: 10.3233/IES-2010-0389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]88. Maenner M.J., Smith L.E., Hong J., Makuch R., Greenberg J.S., Mailick M.R. Evaluation of an activities of daily living scale for adolescents and adults with developmental disabilities. Disabil. Heal. J. 2013;6:8–17. doi: 10.1016/j.dhjo.2012.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]89. Vallati C., Virdis A., Gesi M., Carbonaro N., Tognetti A. ePhysio: A Wearables-Enabled Platform for the Remote Management of Musculoskeletal Diseases. Sensors. 2018;19:2. doi: 10.3390/s19010002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]90. Rodgers M.M., Alon G., Pai V.M., Conroy R.S. Wearable technologies for active living and rehabilitation: Current research challenges and future opportunities. J. Rehabil. Assist. Technol. Eng. 2019;6:2055668319839607. doi: 10.1177/2055668319839607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]91. Chen K.-H., Chen P.-C., Liu K.-C., Chan C.-T. Wearable Sensor-Based Rehabilitation Exercise Assessment for Knee Osteoarthritis. Sensors. 2015;15:4193–4211. doi: 10.3390/s150204193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]92. Swan M. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery. Big Data. 2013;1:85–99. doi: 10.1089/big.2012.0002. [PubMed] [CrossRef] [Google Scholar]93. Hessing T. Measurement Systems Analysis (MSA) Six Sigma Study Guide. [(accessed on 23 March 2021)]; Available online: https://sixsigmastudyguide.com/measurement-systems-analysis/94. Tim D. Getting the Most out of Wearable Technology in Clinical Research. J. Clin. Stud. 2018;10:54–55. [Google Scholar]95. Patringenaru I. Temporary Tattoo Offers Needle-Free Way to Monitor Glucose Levels. [(accessed on 3 August 2021)];2015 Available online: http://ucsdnews.ucsd.edu/pressrelease/temporary_tattoo_offers_needle_free_way_to_monitor_glucose_levels.96. Yamada I., Lopez G. Wearable sensing systems for healthcare monitoring; Proceedings of the 2012 Symposium on VLSI Technology (VLSIT); Honolulu, HI, USA. 12–14 June 2012; pp. 5–10. [CrossRef] [Google Scholar]97. Zhang Y., Song S., Vullings R., Biswas D., Simões-Capela N., Van Helleputte N., Van Hoof C., Groenendaal W. Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors. 2019;19:673. doi: 10.3390/s19030673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]98. Bent B., Goldstein B.A., Kibbe W.A., Dunn J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020;3:1–9. doi: 10.1038/s41746-020-0226-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]99. Piccinini F., Martinelli G., Carbonaro A. Accuracy of Mobile Applications versus Wearable Devices in Long-Term Step Measurements. Sensors. 2020;20:6293. doi: 10.3390/s20216293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]100. Size S., For S., Detection I. 2016. [(accessed on 3 August 2021)]. Grid-Eye State of the Art Thermal Imaging Solution; pp. 1–17. Available online: https://eu.industrial.panasonic.com/sites/default/pidseu/files/whitepaper_grid-eye.pdf. [Google Scholar]101. Schrangl P., Reiterer F., Heinemann L., Freckmann G., Del Re L. Limits to the Evaluation of the Accuracy of Continuous Glucose Monitoring Systems by Clinical Trials. Biosensors. 2018;8:50. doi: 10.3390/bios8020050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]102. Stanley J.A., Johnsen S.B., Apfeld J. The SensorOverlord predicts the accuracy of measurements with ratiometric biosensors. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-73987-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]103. Rose D.P., Ratterman M.E., Griffin D.K., Hou L., Kelley-Loughnane N., Naik R.R., Hagen J.A., Papautsky I., Heikenfeld J.C. Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes. IEEE Trans. Biomed. Eng. 2014;62:1457–1465. doi: 10.1109/TBME.2014.2369991. [PubMed] [CrossRef] [Google Scholar]104. Bandodkar A.J., Jia W., Wang J. Tattoo-Based Wearable Electrochemical Devices: A Review. Electroanalysis. 2015;27:562–572. doi: 10.1002/elan.201400537. [CrossRef] [Google Scholar]105. How Accurate Can RFID Tracking Be RFID Journal. [(accessed on 12 May 2021)]; Available online: www.rfidjournal.com/question/how-accurate-can-rfid-tracking-be.106. De Castro M.P., Meucci M., Soares D., Fonseca P., Borgonovo-Santos M., Sousa F., Machado L., Vilas-Boas J.P. Accuracy and Repeatability of the Gait Analysis by the WalkinSense System. BioMed Res. Int. 2014;2014:348659. doi: 10.1155/2014/348659. [PMC free article] [PubMed] [CrossRef] [Google Scholar]107. Weizman Y., Tan A.M., Fuss F.K. Accuracy of Centre of Pressure Gait Measurements from Two Pressure-Sensitive Insoles. MDPI Proc. 2018;2:277. doi: 10.3390/proceedings2060277. [CrossRef] [Google Scholar]108. Mohd-Yasin F., Nagel D.J., Korman E.C. Noise in MEMS. Meas. Sci. Technol. 2009;21:012001. doi: 10.1088/0957-0233/21/1/012001. [CrossRef] [Google Scholar]109. Yu Y., Han F., Bao Y., Ou J. A Study on Data Loss Compensation of WiFi-Based Wireless Sensor Networks for Structural Health Monitoring. IEEE Sensors J. 2015;16:3811–3818. doi: 10.1109/JSEN.2015.2512846. [CrossRef] [Google Scholar]110. ElAmrawy F., Nounou M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Health Inform. Res. 2015;21:315–320. doi: 10.4258/hir.2015.21.4.315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]111. Pardamean B., Soeparno H., Mahesworo B., Budiarto A., Baurley J. Comparing the Accuracy of Multiple Commercial Wearable Devices: A Method. Procedia Comput. Sci. 2019;157:567–572. doi: 10.1016/j.procs.2019.09.015. [CrossRef] [Google Scholar]112. Mardonova M., Choi Y. Review of Wearable Device Technology and Its Applications to the Mining Industry. Energies. 2018;11:547. doi: 10.3390/en11030547. [CrossRef] [Google Scholar]113. Ra H.-K., Ahn J., Yoon H.J., Yoon D., Son S.H., Ko J. I am a “Smart” watch, Smart Enough to Know the Accuracy of My Own Heart Rate Sensor; Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications; Sonoma, CA, USA. 21–22 February 2017; pp. 49–54. [CrossRef] [Google Scholar]114. Ciuti G., Ricotti L., Menciassi A., Dario P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors. 2015;15:6441–6468. doi: 10.3390/s150306441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]115. Bieber G., Haescher M., Vahl M. Sensor requirements for activity recognition on smart watches; Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments; Rhodes, Greece. 29–31 May 2013; pp. 1–6. [CrossRef] [Google Scholar]116. Khoshnoud F., De Silva C.W. Recent advances in MEMS sensor technology-mechanical applications. IEEE Instrum. Meas. Mag. 2012;15:14–24. doi: 10.1109/MIM.2012.6174574. [CrossRef] [Google Scholar]117. Ghomian T., Mehraeen S. Survey of energy scavenging for wearable and implantable devices. Energy. 2019;178:33–49. doi: 10.1016/j.energy.2019.04.088. [CrossRef] [Google Scholar]118. Ching K.W., Singh M.M. Wearable Technology Devices Security and Privacy Vulnerability Analysis. Int. J. Netw. Secur. Appl. 2016;8:19–30. doi: 10.5121/ijnsa.2016.8302. [CrossRef] [Google Scholar]119. Byrom B., Watson C., Doll H., Coons S.J., Eremenco S., Ballinger R., Mc Carthy M., Crescioni M., O’Donohoe P., Howry C. Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. Value Health. 2018;21:631–639. doi: 10.1016/j.jval.2017.09.012. [PubMed] [CrossRef] [Google Scholar]120. Patel S., Park H., Bonato P., Chan L., Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]121. Ameri S.K., Hongwoo J., Jang H., Tao L., Wang Y., Wang L., Schnyer D.M., Akinwande D., Lu N. Graphene Electronic Tattoo Sensors. ACS Nano. 2017;11:7634–7641. doi: 10.1021/acsnano.7b02182. [PubMed] [CrossRef] [Google Scholar]122. Chandel V., Sinharay A., Ahmed N., Ghose A. Exploiting IMU Sensors for IOT Enabled Health Monitoring; Proceedings of the First Workshop on IoT-Enabled Healthcare and Wellness Technologies and Systems; Singapore. 30 June 2016; pp. 21–22. [CrossRef] [Google Scholar]123. Healthcare-in-Europe Smart Watches and Fitness Trackers Useful but May Increase Anxiety. [(accessed on 23 February 2021)]; Available online: https://healthcare-in-europe.com/en/news/smart-watches-fitness-trackers-useful-but-may-increase-anxiety.html.124. Andersen T.O., Langstrup H., Lomborg S. Experiences with Wearable Activity Data during Self-Care by Chronic Heart Patients: Qualitative Study. J. Med. Internet Res. 2020;22:e15873. doi: 10.2196/15873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]125. Zawn Villines L. Mood Tracker Apps_ Learn More About Some of the Best Options Here. Medical News Today. [(accessed on 3 August 2021)];2020 Available online: www.medicalnewstoday.com/articles/mood-tracker-app.126. Mendu S., Baee S. Redesigning the Quantified Self Ecosystem with Mental Health in Mind. ACM; Honolulu, HI, USA: 2020. [CrossRef] [Google Scholar]127. Majumdar N. Quantified Self Detecting and Resolving Depression by Your Mobile Phone–Emberify Blog. [(accessed on 5 February 2021)]; Available online: https://emberify.com/blog/quantified-self-depression/128. Projects Institute for Health Metrics and Evaluation. [(accessed on 10 May 2021)];2016 Available online: www.healthdata.org/projects.129. Cilliers L. Wearable devices in healthcare: Privacy and information security issues. Health Inf. Manag. J. 2019;49:150–156. doi: 10.1177/1833358319851684. [PubMed] [CrossRef] [Google Scholar]130. Tawalbeh L., Muheidat F., Tawalbeh M., Quwaider M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020;10:4102. doi: 10.3390/app10124102. [CrossRef] [Google Scholar]131. Kapoor V., Singh R., Reddy R., Churi P. Privacy Issues in Wearable Technology: An Intrinsic Review; Proceedings of the International Conference on Innovative Computing and Communication (ICICC-2020); New Delhi, India. 21–23 February 2020; [CrossRef] [Google Scholar]132. Sankar R., Le X., Lee S., Wang D. Implantable Sensor Systems for Medical Applications. Woodhead Publishing; Sawston, UK: 2013. Protection of data confidentiality and patient privacy in medical sensor networks; pp. 279–298. [CrossRef] [Google Scholar]133. Alrababah Z. Privacy and Security of Wearable Devices. December 2020. [(accessed on 10 May 2021)]; Available online: https://www.researchgate.net/publication/347558128_Privacy_and_Security_of_Wearable_Devices.134. Paul G., Irvine J. Privacy Implications of Wearable Health Devices; Proceedings of the 7th International Conference on Security of Information and Networks; Glasgow, Scotland, UK. 9–11 September 2014; New York, NY, USA: Association for Computing Machinery; 2014. [CrossRef] [Google Scholar]135. Nguyen T., Gupta S., Venkatesh S., Phung D. Nonparametric discovery of movement patterns from accelerometer signals. Pattern Recognit. Lett. 2016;70:52–58. doi: 10.1016/j.patrec.2015.11.003. [CrossRef] [Google Scholar]136. Ushmani A. Machine Learning Pattern Matching. J. Comput. Sci. Trends Technol. 2019;7:4–7. doi: 10.13140/RG.2.2.16276.96649. [CrossRef] [Google Scholar]137. Pendlimarri D., Petlu P.B.B. Novel Pattern Matching Algorithm for Single Pattern Matching. Int. J. Comput. Sci. Eng. 2010;2:2698–2704. [Google Scholar]138. Sarkania V.K., Bhalla V.K. Android Internals. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013;3:143–147. [Google Scholar]139. Mohammed M., Khan M.B., Bashie E.B.M. Machine Learning: Algorithms and Applications. CRC Press; Boca Raton, FL, USA: 2016. [Google Scholar]140. Gmyzin D. Master’s Thesis. Technological University Dublin; Dublin, Ireland: 2017. A Comparison of Supervised Machine Learning Classification Techniques and Theory-Driven Approaches for the Prediction of Subjective Mental Workload Subjective Mental. [Google Scholar]141. Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J.O., Olakanmi O., Akinjobi J. Supervised Machine Learning Algorithms: Classification and Comparison. Int. J. Comput. Trends Technol. 2017;48:128–138. doi: 10.14445/22312803/ijctt-v48p126. [CrossRef] [Google Scholar]142. Rajoub B. Biomedical Signal Processing and Artificial Intelligence in Healthcare. Academic Press; Cambridge, MA, USA: 2020. Supervised and unsupervised learning; pp. 51–89. [CrossRef] [Google Scholar]143. Rani S., Babbar H., Coleman S., Singh A. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones. Sensors. 2021;21:3845. [PMC free article] [PubMed] [Google Scholar]144. Pietroni F., Casaccia S., Revel G.M., Scalise L. Methodologies for continuous activity classification of user through wearable devices: Feasibility and preliminary investigation; Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS); Catania, Italy. 20–22 April 2016; pp. 1–6. [CrossRef] [Google Scholar]145. Ben-gal I. Data Mining and Knowledge Discovery Handbook. Springer; New York, NY, USA: 2014. Outlier detection Irad Ben-Gal Department of Industrial Engineering; p. 11. [CrossRef] [Google Scholar]146. Colpas P.A., Vicario E., De-La-Hoz-Franco E., Pineres-Melo M., Oviedo-Carrascal A., Patara F. Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. Sensors. 2020;20:2702. doi: 10.3390/s20092702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]147. Hailat Z., Komarichev A., Chen X.-W. Deep Semi-Supervised Learning; Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR); Beijing, China. 20–24 August 2018; pp. 2154–2159. [CrossRef] [Google Scholar]148. Stikic M., Larlus D., Schiele B. Multi-graph Based Semi-supervised Learning for Activity Recognition; Proceedings of the 2009 International Symposium on Wearable Computers; Linz, Austria. 4–7 September 2009; pp. 85–92. [CrossRef] [Google Scholar]149. Lee J., Bahri Y., Novak R., Schoenholz S.S., Pennington J., Sohl-Dickstein J. Deep neural networks as gaussian processes. arXiv. 20171711.00165 [Google Scholar]150. Xu H., Li L., Fang M., Zhang F. Movement Human Actions Recognition Based on Machine Learning. Int. J. Online Eng. (iJOE) 2018;14:193–210. doi: 10.3991/ijoe.v14i04.8513. [CrossRef] [Google Scholar]151. Fu A., Yu Y. Real-Time Gesture Pattern Classification with IMU Data. [(accessed on 3 August 2021)];2017 Available online: http://stanford.edu/class/ee267/Spring2017/report_fu_yu.pdf.152. Bujari A., Licar B., Palazzi C.E. Movement pattern recognition through smartphone’s accelerometer; Proceedings of the 2012 IEEE Consumer Communications and Networking Conference (CCNC); Las Vegas, NV, USA. 14–17 January 2012; pp. 502–506. [CrossRef] [Google Scholar]153. Baca A. Methods for Recognition and Classification of Human Motion Patterns—A Prerequisite for Intelligent Devices Assisting in Sports Activities. IFAC Proc. Vol. 2012;45:55–61. doi: 10.3182/20120215-3-AT-3016.00009. [CrossRef] [Google Scholar]154. Farhan H., Al-Muifraje M.H., Saeed T.R. A new model for pattern recognition. Comput. Electr. Eng. 2020;83:106602. doi: 10.1016/j.compeleceng.2020.106602. [CrossRef] [Google Scholar]155. Harvey S., Harvey R. An introduction to artificial intelligence. Appita J. 2016;51:20–24. [Google Scholar]156. Neapolitan R.E., Jiang X. Neural Networks and Deep Learning. Determination Press; San Francisco, CA, USA: 2018. pp. 389–411. [CrossRef] [Google Scholar]157. Maurer U., Smailagic A., Siewiorek D., Deisher M. Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions; Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06); Cambridge, MA, USA. 3–5 April 2006; pp. 113–116. [CrossRef] [Google Scholar]158. Lara D., Labrador M.A. A mobile platform for real-time human activity recognition; Proceedings of the 2012 IEEE Consumer Communications and Networking Conference (CCNC); Las Vegas, NV, USA. 14–17 January 2012; pp. 667–671. [CrossRef] [Google Scholar]159. Tapia E.M., Intille S.S., Haskell W., Larson K., Wright J., King A., Friedman R. Real-time recognition of physical activities and theirintensities using wireless accelerometers and a heart monitor; Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers; Boston, MA, USA. 11–13 October 2007. [Google Scholar]160. Tzu-Ping K., Che-Wei L., Jeen-Shing W. Development of a portable activity detector for daily activity recognition; Proceedings of the IEEE International Symposium on Industrial Electronics; Seoul, Korea. 5–8 July 2009; pp. 115–122. [Google Scholar]161. Bhat G., Deb R., Ogras U.Y. OpenHealth: Open-Source Platform for Wearable Health Monitoring. IEEE Des. Test. 2019;36:27–34. doi: 10.1109/MDAT.2019.2906110. [CrossRef] [Google Scholar]162. Nakamura Y., Matsuda Y., Arakawa Y., Yasumoto K. WaistonBelt X:A Belt-Type Wearable Device with Sensing and Intervention Toward Health Behavior Change. Sensors. 2019;19:4600. doi: 10.3390/s19204600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]163. Munoz-Organero M. Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs. IEEE Access. 2019;7:74422–74436. doi: 10.1109/ACCESS.2019.2921096. [CrossRef] [Google Scholar]164. Lara O.D., Labrador M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013;15:1192–1209. doi: 10.1109/SURV.2012.110112.00192. [CrossRef] [Google Scholar]165. Kaghyan S., Sarukhanyan H.G. Activity recognitionusing k-nearest neighbor algorithm on smartphone with triaxial accelerometer. Int. J. Inform. Models Anal. 2012;1:146–156. [Google Scholar]166. Arias P., Kelley C., Mason J., Bryant K., Roy K. Classification of User Movement Data; Proceedings of the 2nd International Conference on Digital Signal Processing; Tokyo, Japan. 25–27 February 2018; [CrossRef] [Google Scholar]167. Seok W., Kim Y., Park C. Pattern Recognition of Human Arm Movement Using Deep Reinforcement Learning Intelligent Information System and Embedded Software Engineering. Kwangwoon University; Seoul, Korea: 2018. pp. 917–919. [Google Scholar]168. Gupta S.M., Mujawar A. Tracking and Prediciting Movement Patterns of a Moving Object in Wiresless Sensor Network; Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. 11–12 May 2018; pp. 586–591. [CrossRef] [Google Scholar]169. Zhang Y., Zhang Z., Zhang Y., Bao J., Zhang Y., Deng H. Human Activity Recognition Based on Motion Sensor Using U-Net. IEEE Access. 2019;7:75213–75226. doi: 10.1109/ACCESS.2019.2920969. [CrossRef] [Google Scholar]170. Xu C., Chai D., He J., Zhang X., Duan S. InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE Access. 2019;7:9893–9902. doi: 10.1109/ACCESS.2018.2890675. [CrossRef] [Google Scholar]171. Clouthier A.L., Ross G.B., Graham R.B. Sensor Data Required for Automatic Recognition of Athletic Tasks Using Deep Neural Networks. Front. Bioeng. Biotechnol. 2020;7:473. doi: 10.3389/fbioe.2019.00473. [PMC free article] [PubMed] [CrossRef] [Google Scholar]172. Hwang I., Cha G., Oh S. Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data; Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); San Diego, CA, USA. 14–16 September 2017; pp. 278–283. [CrossRef] [Google Scholar]173. Gumaei A., Hassan M.M., Alelaiwi A., Alsalman H. A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data. IEEE Access. 2019;7:99152–99160. doi: 10.1109/ACCESS.2019.2927134. [CrossRef] [Google Scholar]174. Karungaru S. Human action recognition using wearable sensors and neural networks; Proceedings of the 2015 10th Asian Control Conference (ASCC); Kota Kinabalu, Malaysia. 31 May–3 June 2015; pp. 1–4. [CrossRef] [Google Scholar]175. Choi A., Jung H., Mun J.H. Single Inertial Sensor-Based Neural Networks to Estimate COM-COP Inclination Angle during Walking. Sensors. 2019;19:2974. doi: 10.3390/s19132974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]176. Xie B., Li B., Harland A. Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology; Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition; Beijing, China. 18–20 August 2018; pp. 26–31. [CrossRef] [Google Scholar]177. Nguyen T., Gupta S., Venkatesh S., Phung D. A Bayesian Nonparametric Framework for Activity Recognition Using Accelerometer Data; Proceedings of the 2014 22nd International Conference on Pattern Recognition; Stockholm, Sweden. 24–28 August 2014; pp. 2017–2022. [CrossRef] [Google Scholar]178. Cheng L., You C., Guan Y., Yu Y. Body activity recognition using wearable sensors; Proceedings of the 2017 Computing Conference; London, UK. 18–20 July 2017; pp. 756–765. [CrossRef] [Google Scholar]179. Chen Y., Guo M., Wang Z. An improved algorithm for human activity recognition using wearable sensors; Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI); Chiang Mai, Thailand. 14–16 February 2016; pp. 248–252. [CrossRef] [Google Scholar]180. Mekruksavanich S., Jitpattanakul A. Classification of Gait Pattern with Wearable Sensing Data; Proceedings of the 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering; Nan, Thailand. 30 January–2 February 2019; pp. 137–141. [CrossRef] [Google Scholar]181. Hachaj T., Piekarczyk M. Evaluation of Pattern Recognition Methods for Head Gesture-Based Interface of a Virtual Reality Helmet Equipped with a Single IMU Sensor. Sensors. 2019;19:5408. doi: 10.3390/s19245408. [PMC free article] [PubMed] [CrossRef] [Google Scholar]182. Kim M., Cho J., Lee S., Jung Y. IMU Sensor-Based Hand Gesture Recognition for Human-Machine Interfaces. Sensors. 2019;19:3827. doi: 10.3390/s19183827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]183. DiLiberti N., Peng C., Kaufman C., Dong Y., Hansberger J.T. Real-Time Gesture Recognition Using 3D Sensory Data and a Light Convolutional Neural Network; Proceedings of the 27th ACM International Conference on Multimedia; Nice, France. 21–25 February 2019; pp. 401–410. [CrossRef] [Google Scholar]184. Alavi S., Arsenault D., Whitehead A. Quaternion-Based Gesture Recognition Using Wireless Wearable Motion Capture Sensors. Sensors. 2016;16:605. doi: 10.3390/s16050605. [PMC free article] [PubMed] [CrossRef] [Google Scholar]185. Santhoshkumar R., Geetha M.K. Deep Learning Approach for Emotion Recognition from Human Body Movements with Feedforward Deep Convolution Neural Networks. Procedia Comput. Sci. 2019;152:158–165. doi: 10.1016/j.procs.2019.05.038. [CrossRef] [Google Scholar]186. Hu B., Dixon P.C., Jacobs J., Dennerlein J., Schiffman J. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. J. Biomech. 2018;71:37–42. doi: 10.1016/j.jbiomech.2018.01.005. [PubMed] [CrossRef] [Google Scholar]187. Lin W.-Y., Verma V.K., Lee M.-Y., Lai C.-S. Activity Monitoring with a Wrist-Worn, Accelerometer-Based Device. Micromachines. 2018;9:450. doi: 10.3390/mi9090450. [PMC free article] [PubMed] [CrossRef] [Google Scholar]188. Estévez P.A., Held C.M., Holzmann C.A., Perez C.A., Pérez J.P., Heiss J., Garrido M., Peirano P. Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med. Biol. Eng. Comput. 2002;40:105–113. doi: 10.1007/BF02347703. [PubMed] [CrossRef] [Google Scholar]189. Procházka A., Kuchyňka J., Vyšata O., Cejnar P., Vališ M., Mařík V. Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition. Appl. Sci. 2018;8:697. doi: 10.3390/app8050697. [CrossRef] [Google Scholar]190. Gandhi R. Introduction to Machine Learning Algorithms: Linear Regression. Toward Data Science. [(accessed on 3 August 2021)];2018 Available online: https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a.191. Duffy S.A. HHS Public Access Author manuscript. J. Community Health. 2013;38:597–602. doi: 10.1007/s10900-013-9656-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]192. Migueles J.H., Rowlands A.V., Huber F., Sabia S., Van Hees V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes from Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019;2:188–196. doi: 10.1123/jmpb.2018-0063. [CrossRef] [Google Scholar]193. Kim Y., Hibbing P., Saint-Maurice P.F., Ellingson L.D., Hennessy E., Wolff-Hughes D.L., Perna F.M., Welk G.J. Surveillance of Youth Physical Activity and Sedentary Behavior with Wrist Accelerometry. Am. J. Prev. Med. 2017;52:872–879. doi: 10.1016/j.amepre.2017.01.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]194. Cole-kripke T., Daniel F., Sadeh T. ActiGraph White Paper Actigraphy Sleep Scoring Algorithms. [(accessed on 3 August 2021)];1992 Available online: https://actigraphcorp.com/195. Quante M., Kaplan E.R., Cailler M., Rueschman M., Wang R., Weng J., Taveras E.M., Redline S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep. 2018;10:13–20. doi: 10.2147/NSS.S151085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]196. Haghayegh S., Khoshnevis S., Smolensky M.H., Diller K.R., Castriotta R.J. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chrono. Int. 2019;36:1752–1760. doi: 10.1080/07420528.2019.1679826. [PubMed] [CrossRef] [Google Scholar]197. Lee P.H., Suen L.K.P. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Sleep Breath. 2016;21:209–215. doi: 10.1007/s11325-016-1406-0. [PubMed] [CrossRef] [Google Scholar]

1. Pantelopoulos A., Bourbakis N.G. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man. Cybern. Part C Appl. Rev. 2009;40:1–12. doi: 10.1109/TSMCC.2009.2032660. [CrossRef] [Google Scholar]2. Liu S. Wearable Technology–Statistics & Facts Statista. [(accessed on 3 August 2021)];2019 Available online: www.statista.com/topics/1556/wearable-technology/3. Frost B. Market Research Report. Strategy R. 2014;7215:1–31. [Google Scholar]4. Pando A. Wearable Health Technologies and Their Impact on the Health Industry. Forbes. [(accessed on 31 May 2021)];2019 Available online: www.forbes.com/sites/forbestechcouncil/2019/05/02/wearable-health-technologies-and-their-impact-on-the-health-industry/#4eac185f3af5.5. Tankovska H. Global Connected Wearable Devices 2016–2022 Statista. Statista. [(accessed on 5 February 2021)];2020 Available online: www.statista.com/statistics/487291/global-connected-wearable-devices/6. Connolly J. Wearable Rehabilitative Technology for the Movement Measurement of Patients with Arthritis. Ulster University, February 2015. [(accessed on 3 August 2021)]; Available online: https://ethos.bl.uk/OrderDetails.do?did=1&uin=uk.bl.ethos.675471.7. Song M.-S., Kang S.-G., Lee K.-T., Kim J. Wireless, Skin-Mountable EMG Sensor for Human–Machine Interface Application. Micromachines. 2019;10:879. doi: 10.3390/mi10120879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]8. Massaroni C., Saccomandi P., Schena E. Medical Smart Textiles Based on Fiber Optic Technology: An Overview. J. Funct. Biomater. 2015;6:204–221. doi: 10.3390/jfb6020204. [PMC free article] [PubMed] [CrossRef] [Google Scholar]9. Jouffroy R., Jost D., Prunet B. Prehospital pulse oximetry: A red flag for early detection of silent hypoxemia in COVID-19 patients. Crit. Care. 2020;24:1–2. doi: 10.1186/s13054-020-03036-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]10. Best J. Wearable technology: Covid-19 and the rise of remote clinical monitoring. BMJ. 2021;372:n413. doi: 10.1136/bmj.n413. [PubMed] [CrossRef] [Google Scholar]11. Vijayan V., McKelvey N., Condell J., Gardiner P., Connolly J. Implementing Pattern Recognition and Matching techniques to automatically detect standardized functional tests from wearable technology; Proceedings of the 2020 31st Irish Signals and Systems Conference (ISSC); Letterkenny, Ireland. 11–12 June 2020; [CrossRef] [Google Scholar]12. Majumder S., Mondal T., Deen M.J. Wearable Sensors for Remote Health Monitoring. Sensors. 2017;17:130. doi: 10.3390/s17010130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]13. Sun H., Zhang Z., Hu R.Q., Qian Y. Wearable Communications in 5G: Challenges and Enabling Technologies. IEEE Veh. Technol. Mag. 2018;13:100–109. doi: 10.1109/MVT.2018.2810317. [CrossRef] [Google Scholar]14. Schrader L., Toro A.V., Konietzny S., Rüping S., Schäpers B., Steinböck M., Krewer C., Müller F., Güttler J., Bock T. Advanced Sensing and Human Activity Recognition in Early Intervention and Rehabilitation of Elderly People. J. Popul. Ageing. 2020;13:139–165. doi: 10.1007/s12062-020-09260-z. [CrossRef] [Google Scholar]15. Cha J., Kim J., Kim S. Hands-free user interface for AR/VR devices exploiting wearer’s facial gestures using unsupervised deep learning. Sensors. 2019;19:4441. doi: 10.3390/s19204441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]16. Sensoria Fitness: Motion and Activity Tracking Smart Clothing for Sports and Fitness. [(accessed on 6 August 2021)];2021 Available online: https://store.sensoriafitness.com/17. TEKSCAN Gait Mat|HR Mat|Tekscan. Photo Courtesy of Tekscan™, Inc. [(accessed on 4 July 2021)]; Available online: www.tekscan.com/products-solutions/systems/hr-mat.18. Image Courtesy 5DT.com; DT Technologies Home—5DT. [(accessed on 29 July 2020)]; Available online: https://5dt.com/19. NEXGEN NexGen Ergonomics–Products–Biometrics–Goniometers and Torsiometers. [(accessed on 3 August 2021)]; Available online: www.nexgenergo.com/ergonomics/biosensors.html.20. Bell . J. Wearable Health Monitoring Systems. Technical Report; Nyx Illuminated Clothing Company; Culver City, CA, USA: 2019. p. 218857. [Google Scholar]21. Lee J., Kim D., Ryoo H.-Y., Shin B.-S. Sustainable Wearables: Wearable Technology for Enhancing the Quality of Human Life. Sustainability. 2016;8:466. doi: 10.3390/su8050466. [CrossRef] [Google Scholar]22. Hurdles C. Applied Clinical Trials- Your Peer-Reviewed Guide to Gobal Clinical Trials Management. [(accessed on 3 August 2021)];2017 Available online: https://cdn.sanity.io/files/0vv8moc6/act/346a82766960a17da2099b5f1268d0efba485d2a.pdf.23. Grimm B., Bolink S. Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Rev. 2016;1:112–120. doi: 10.1302/2058-5241.1.160022. [PMC free article] [PubMed] [CrossRef] [Google Scholar]24. Dhairya K. Introduction to Data Preprocessing in Machine Learning. [(accessed on 3 August 2021)];2018 Available online: https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9.25. Mavor M.P., Ross G.B., Clouthier A.L., Karakolis T., Graham R.B. Validation of an IMU Suit for Military-Based Tasks. Sensors. 2020;20:4280. doi: 10.3390/s20154280. [PMC free article] [PubMed] [CrossRef] [Google Scholar]26. Balsa A., Carmona L., González-Alvaro I., Belmonte M.A., Tena X., Sanmartí R. Value of Disease Activity Score 28 (DAS28) and DAS28-3 Compared to American College of Rheumatology-Defined Remission in Rheumatoid Arthritis. J. Rheumatol. 2004;31:40–46. [PubMed] [Google Scholar]27. Callmer J. Master’s Thesis. Linköping University Electronic Press; Linköping, Sweden: 2016. Autonomous Localization in Unknown Environments; p. 1520. [Google Scholar]28. Estevez P., Bank J., Porta M., Wei J., Sarro P., Tichem M., Staufer U. 6 DOF force and torque sensor for micro-manipulation applications. Sens. Actuators A Phys. 2012;186:86–93. doi: 10.1016/j.sna.2012.02.037. [CrossRef] [Google Scholar]29. Pandey A., Mazumdar C., Ranganathan R., Tripathi S., Pandey D., Dattagupta S. Transverse vibrations driven negative thermal expansion in a metallic compound GdPd3B0.25C0.75. Appl. Phys. Lett. 2008;92:261913. doi: 10.1063/1.2953175. [CrossRef] [Google Scholar]30. Sparkfun Accelerometer, Gyro and IMU Buying Guide–SparkFun Electronics. [(accessed on 3 August 2021)];2016 :1. Available online: www.sparkfun.com/pages/accel_gyro_guide.31. On Board Mpu9255 10 Axial Inertial Navigation Module10 Dof Imu Sensor(b)gyroscope Acceleration Sensor–Buy Mpu9255 10 Axial Inertial Navigation Module, 10 Dof Imu Sensor, Gyroscope Acceleration Sen. [(accessed on 11 May 2021)]; Available online: www.alibaba.com/product-detail/on-board-MPU9255-10-axial-inertial_60838848689.html.32. CANAL GEOMATICS IMU Accuracy Error Definitions Canal Geomatics. [(accessed on 21 February 2021)]; Available online: http://www.canalgeomatics.com/33. Ahmed H., Tahir M. Improving the Accuracy of Human Body Orientation Estimation with Wearable IMU Sensors. IEEE Trans. Instrum. Meas. 2017;66:535–542. doi: 10.1109/TIM.2016.2642658. [CrossRef] [Google Scholar]34. Guner U., Canbolat H., Unluturk A. Design and implementation of adaptive vibration filter for MEMS based low cost IMU; Proceedings of the 2015 9th International Conference on Electrical and Electronics Engineering (ELECO); Bursa, Turkey. 26–28 November 2015; pp. 130–134. [CrossRef] [Google Scholar]35. Paina G.P., Gaydou D., Redolfi J., Paz C., Canali L. Experimental comparison of kalman and complementary filter for attitude estimation. Proc. AST. 2011:205–215. [Google Scholar]36. De Arriba-Pérez F., Caeiro-Rodríguez M., Santos-Gago J.M. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios. Sensors. 2016;16:1538. doi: 10.3390/s16091538. [PMC free article] [PubMed] [CrossRef] [Google Scholar]37. Iman K., Al-Azwani H. Integration of Wearable Technologies into Patient’s Electronic Medical Records. Qual. Prim. Care. 2016;24:151–155. [Google Scholar]38. Lawton E.B. ADL and IADL treatment; Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–186. doi: 10.1093/geront/9.3_Part_1.179. [PubMed] [CrossRef] [Google Scholar]39. Camp N., Lewis M., Hunter K., Johnston J., Zecca M., Di Nuovo A., Magistro D. Technology Used to Recognize Activities of Daily Living in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health. 2020;18:163. doi: 10.3390/ijerph18010163. [PMC free article] [PubMed] [CrossRef] [Google Scholar]40. Lee Y., Kim M., Lee Y., Kwon J., Park Y.-L., Lee D. Wearable Finger Tracking and Cutaneous Haptic Interface with Soft Sensors for Multi-Fingered Virtual Manipulation. IEEE/ASME Trans. Mechatron. 2018;24:67–77. doi: 10.1109/TMECH.2018.2872570. [CrossRef] [Google Scholar]41. Sayem A.S.M., Teay S.H., Shahariar H., Fink P.L., Albarbar A. Review on Smart Electro-Clothing Systems (SeCSs) Sensors. 2020;20:587. doi: 10.3390/s20030587. [PMC free article] [PubMed] [CrossRef] [Google Scholar]42. Xsens Home Xsens 3D Motion Tracking. [(accessed on 11 May 2021)];2015 Available online: www.xsens.com/43. Caeiro-Rodríguez M., Otero-González I., Mikic-Fonte F.A., Llamas-Nistal M. A Systematic Review of Commercial Smart Gloves: Current Status and Applications. Sensors. 2021;21:2667. doi: 10.3390/s21082667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]44. Smart Glove Neofect. [(accessed on 28 May 2021)]; Available online: www.neofect.com/us/smart-glove.45. Shen Z., Yi J., Li X., Lo M.H.P., Chen M.Z.Q., Hu Y., Wang Z. A soft stretchable bending sensor and data glove applications. Robot. Biomimetics. 2016;3:1–8. doi: 10.1186/s40638-016-0051-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]46. Henderson J., Condell J., Connolly J., Kelly D., Curran K. Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors. 2021;21:1576. doi: 10.3390/s21051576. [PMC free article] [PubMed] [CrossRef] [Google Scholar]47. De Pasquale G. Glove-based systems for medical applications: Review of recent advancements. J. Text. Eng. Fash. Technol. 2018;4:1. doi: 10.15406/jteft.2018.04.00153. [CrossRef] [Google Scholar]48. Djurić-Jovičić M., Jovičić N.S., Roby-Brami A., Popović M.B., Kostić V.S., Djordjević A.R. Quantification of Finger-Tapping Angle Based on Wearable Sensors. Sensors. 2017;17:203. doi: 10.3390/s17020203. [PMC free article] [PubMed] [CrossRef] [Google Scholar]49. Shyr T.-W., Shie J.-W., Jiang C.-H., Li J.-J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors. 2014;14:4050–4059. doi: 10.3390/s140304050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]50. Mjøsund H.L., Boyle E., Kjaer P., Mieritz R.M., Skallgård T., Kent P. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes. BMC Musculoskelet. Disord. 2017;18:1–9. doi: 10.1186/s12891-017-1489-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]51. Ortiz M., Juan R., Val S.L. Reliability and Concurrent Validity of the Goniometer-Pro App vs. a Universal Goniometer in determining Passive Flexion of Knee. Int. J. Comput. Appl. 2017;173:30–34. [Google Scholar]52. Totaro M., Poliero T., Mondini A., Lucarotti C., Cairoli G., Ortiz J., Beccai L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors. 2017;17:2314. doi: 10.3390/s17102314. [PMC free article] [PubMed] [CrossRef] [Google Scholar]53. Veari Presents Fineck Smart Wearable Device for Neck Health. [(accessed on 28 May 2021)]; Available online: www.designboom.com/technology/veari-fineck-smart-wearable-device-neck-health-11-25-2014/54. Lo Presti D., Carnevale A., D’Abbraccio J., Massari L., Massaroni C., Sabbadini R., Zaltieri M., Bravi M., Sterzi S., Schena E. A Multi-Parametric Wearable System to Monitor Neck Computer Workers. Sensors. 2020;20:536. doi: 10.3390/s20020536. [PMC free article] [PubMed] [CrossRef] [Google Scholar]55. BTS Products Applications_BTS Bioengineering. [(accessed on 11 May 2021)]; Available online: https://www.btsbioengineering.com/applications/56. ViMove2 Analyse Patient Movement & Muscle Activity–DorsaVi EU. [(accessed on 10 May 2021)]; Available online: www.dorsavi.com/uk/en/vimove/57. Amazon’s New Fitness Tracker Halo Will Monitor Your Tone of Voice—Quartz. [(accessed on 18 May 2021)]; Available online: https://qz.com/1897411/amazons-new-fitness-tracker-halo-will-monitor-your-tone-of-voice/58. Schätz M., Procházka A., Kuchyňka J., Vyšata O. Sleep Apnea Detection with Polysomnography and Depth Sensors. Sensors. 2020;20:1360. doi: 10.3390/s20051360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]59. Liebling S., Langhan M. Pulse Oximetry. Nurs. Times. 2018:98–102. doi: 10.1093/med/9780190659110.003.0015. [CrossRef] [Google Scholar]60. Aliverti A. Wearable technology: Role in respiratory health and disease. Breathe. 2017;13:e27–e36. doi: 10.1183/20734735.008417. [PMC free article] [PubMed] [CrossRef] [Google Scholar]61. Kumar H.S. Wearable Technology in Combination with Diabetes. Int. J. Res. Eng. Sci. Manag. 2019;2:1–4. [Google Scholar]62. Baig M.M. Ph.D. Thesis. Auckland University of Technology; Auckland, New Zealand: 2017. Early Detection and Self-Management of Long-Term Conditions Using Wearable Technologies. [Google Scholar]63. Nishiguchi S., Ito H., Yamada M., Yoshitomi H., Furu M., Ito T., Shinohara A., Ura T., Okamoto K., Aoyama T. Self-Assessment Tool of Disease Activity of Rheumatoid Arthritis by Using a Smartphone Application. Telemed. e-Health. 2014;20:235–240. doi: 10.1089/tmj.2013.0162. [PubMed] [CrossRef] [Google Scholar]64. Managing Rheumatoid Arthritis–NPS MedicineWise. [(accessed on 8 July 2021)]; Available online: www.nps.org.au/consumers/managing-rheumatoid-arthritis.65. How Is a Person Affected by Ankylosing Spondylitis (AS)_ _ SPONDYLITIS. [(accessed on 3 August 2021)]; Available online: https://spondylitis.org/about-spondylitis/possible-complications/66. Swinnen T.W., Milosevic M., Van Huffel S., Dankaerts W., Westhovens R., De Vlam K. Instrumented BASFI (iBASFI) Shows Promising Reliability and Validity in the Assessment of Activity Limitations in Axial Spondyloarthritis. J. Rheumatol. 2016;43:1532–1540. doi: 10.3899/jrheum.150439. [PubMed] [CrossRef] [Google Scholar]67. Irons K., Harrison H., Thomas A., Martindale J. Ankylosing Spondylitis (Axial Spondyloarthritis). The Bath Indices. [(accessed on 3 August 2021)];2016 :1. Available online: www.nass.co.uk.68. Annoni F. The health assessment questionnaire. J. Petrol. 2000;369:1689–1699. doi: 10.1017/cbo9781107415324.004. [CrossRef] [Google Scholar]69. Rawassizadeh R., Momeni E., Dobbins C., Mirza-Babaei P., Rahnamoun R. Lesson Learned from Collecting Quantified Self Information via Mobile and Wearable Devices. J. Sens. Actuator Netw. 2015;4:315–335. doi: 10.3390/jsan4040315. [CrossRef] [Google Scholar]70. Çiçek M. Wearable Technologies and Its Future Applications. Int. J. Electr. Electron. Data Commun. 2015;3:45–50. [Google Scholar]71. Piwek L., Ellis D., Andrews S., Joinson A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 2016;13:e1001953. doi: 10.1371/journal.pmed.1001953. [PMC free article] [PubMed] [CrossRef] [Google Scholar]72. Whitney L. 21 Tips Every Apple Watch Owner Should Know PCMag. PCMag. [(accessed on 1 June 2021)];2020 Available online: www.pcmag.com/how-to/20-tips-every-apple-watch-owner-should-know.73. Fitbit Sense In-Depth Review_All the Data Without the Clarity_DC Rainmaker. [(accessed on 1 June 2021)]; Available online: www.dcrainmaker.com/2020/09/fitbit-sense-in-depth-review-all-the-data-without-the-clarity.html.74. Stein S. Samsung Gear 2 Review_A Smartwatch that Tries to Be Everything–CNET. [(accessed on 1 June 2021)]; Available online: www.cnet.com/reviews/samsung-gear-2-review/75. [(accessed on 3 August 2021)]; Available online: https://www.google.com/search?client=firefox-b-d&q=smartdevice-samsung-gear-s-um+76. Activity W., Tracker S., Guide Q.S. Wireless Activity and Sleep Tracker. [(accessed on 3 August 2021)]; Available online: https://uk.pcmag.com/migrated-99802-smartwatches/122576/21-tips-every-apple-watch-owner-should-know.77. PEBBLE-WATCH BLUETOOTH Watch User Manual Pebble Technology. [(accessed on 1 June 2021)]; Available online: https://fccid.io/RGQ-PEBBLE-WATCH/User-Manual/user-manual-1868584.78. Xiaomi Mi Band 6 User Manual Download (English Language) [(accessed on 21 July 2021)]; Available online: www.smartwatchspecifications.com/xiaomi-mi-band-6-user-manual/79. Mannion P. Teardown: Misfit Shine 2 and the Art of Power Management. EDN. [(accessed on 1 June 2021)]; Available online: https://www.edn.com/teardown-misfit-shine-2-and-the-art-of-power-management/80. Apps and Fitness–Sony Smartwatch 3 Review TechRadar. [(accessed on 1 June 2021)]; Available online: www.techradar.com/reviews/sony-smartwatch-3/4.81. Bennett B. Fitbit Flex Review_A Most Versatile, Feature-Packed Tracker–CNET. [(accessed on 1 June 2021)];2016 Available online: www.cnet.com/reviews/fitbit-flex-review/82. ONcoach 100. [(accessed on 1 June 2021)]; Available online: https://support.decathlon.co.uk/oncoach-100.83. ActiGraph Link. [(accessed on 1 June 2021)]; Available online: https://actigraphcorp.com/actigraph-link/84. Garmin VivoSmart HR+ [(accessed on 3 August 2021)]; Available online: https://www.expansys.jp/garmin-vivosmart-hr-regular-size-black-taiwan-spec-291780/85. MotionNode Bus Wearable Sensor Network. [(accessed on 22 July 2021)]; Available online: www.motionnode.com/bus.html.86. Wilson S., Laing R.M. Wearable Technology: Present and Future; Proceedings of the 91st World Conference; Leeds, UK. 23–26 July 2018. [Google Scholar]87. Bohannon R.W., Bubela D.J., Magasi S.R., Wang Y.-C., Gershon R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet. Exerc. Sci. 2010;18:235–240. doi: 10.3233/IES-2010-0389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]88. Maenner M.J., Smith L.E., Hong J., Makuch R., Greenberg J.S., Mailick M.R. Evaluation of an activities of daily living scale for adolescents and adults with developmental disabilities. Disabil. Heal. J. 2013;6:8–17. doi: 10.1016/j.dhjo.2012.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]89. Vallati C., Virdis A., Gesi M., Carbonaro N., Tognetti A. ePhysio: A Wearables-Enabled Platform for the Remote Management of Musculoskeletal Diseases. Sensors. 2018;19:2. doi: 10.3390/s19010002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]90. Rodgers M.M., Alon G., Pai V.M., Conroy R.S. Wearable technologies for active living and rehabilitation: Current research challenges and future opportunities. J. Rehabil. Assist. Technol. Eng. 2019;6:2055668319839607. doi: 10.1177/2055668319839607. [PMC free article] [PubMed] [CrossRef] [Google Scholar]91. Chen K.-H., Chen P.-C., Liu K.-C., Chan C.-T. Wearable Sensor-Based Rehabilitation Exercise Assessment for Knee Osteoarthritis. Sensors. 2015;15:4193–4211. doi: 10.3390/s150204193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]92. Swan M. The Quantified Self: Fundamental Disruption in Big Data Science and Biological Discovery. Big Data. 2013;1:85–99. doi: 10.1089/big.2012.0002. [PubMed] [CrossRef] [Google Scholar]93. Hessing T. Measurement Systems Analysis (MSA) Six Sigma Study Guide. [(accessed on 23 March 2021)]; Available online: https://sixsigmastudyguide.com/measurement-systems-analysis/94. Tim D. Getting the Most out of Wearable Technology in Clinical Research. J. Clin. Stud. 2018;10:54–55. [Google Scholar]95. Patringenaru I. Temporary Tattoo Offers Needle-Free Way to Monitor Glucose Levels. [(accessed on 3 August 2021)];2015 Available online: http://ucsdnews.ucsd.edu/pressrelease/temporary_tattoo_offers_needle_free_way_to_monitor_glucose_levels.96. Yamada I., Lopez G. Wearable sensing systems for healthcare monitoring; Proceedings of the 2012 Symposium on VLSI Technology (VLSIT); Honolulu, HI, USA. 12–14 June 2012; pp. 5–10. [CrossRef] [Google Scholar]97. Zhang Y., Song S., Vullings R., Biswas D., Simões-Capela N., Van Helleputte N., Van Hoof C., Groenendaal W. Motion Artifact Reduction for Wrist-Worn Photoplethysmograph Sensors Based on Different Wavelengths. Sensors. 2019;19:673. doi: 10.3390/s19030673. [PMC free article] [PubMed] [CrossRef] [Google Scholar]98. Bent B., Goldstein B.A., Kibbe W.A., Dunn J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020;3:1–9. doi: 10.1038/s41746-020-0226-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]99. Piccinini F., Martinelli G., Carbonaro A. Accuracy of Mobile Applications versus Wearable Devices in Long-Term Step Measurements. Sensors. 2020;20:6293. doi: 10.3390/s20216293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]100. Size S., For S., Detection I. 2016. [(accessed on 3 August 2021)]. Grid-Eye State of the Art Thermal Imaging Solution; pp. 1–17. Available online: https://eu.industrial.panasonic.com/sites/default/pidseu/files/whitepaper_grid-eye.pdf. [Google Scholar]101. Schrangl P., Reiterer F., Heinemann L., Freckmann G., Del Re L. Limits to the Evaluation of the Accuracy of Continuous Glucose Monitoring Systems by Clinical Trials. Biosensors. 2018;8:50. doi: 10.3390/bios8020050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]102. Stanley J.A., Johnsen S.B., Apfeld J. The SensorOverlord predicts the accuracy of measurements with ratiometric biosensors. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-73987-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]103. Rose D.P., Ratterman M.E., Griffin D.K., Hou L., Kelley-Loughnane N., Naik R.R., Hagen J.A., Papautsky I., Heikenfeld J.C. Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes. IEEE Trans. Biomed. Eng. 2014;62:1457–1465. doi: 10.1109/TBME.2014.2369991. [PubMed] [CrossRef] [Google Scholar]104. Bandodkar A.J., Jia W., Wang J. Tattoo-Based Wearable Electrochemical Devices: A Review. Electroanalysis. 2015;27:562–572. doi: 10.1002/elan.201400537. [CrossRef] [Google Scholar]105. How Accurate Can RFID Tracking Be RFID Journal. [(accessed on 12 May 2021)]; Available online: www.rfidjournal.com/question/how-accurate-can-rfid-tracking-be.106. De Castro M.P., Meucci M., Soares D., Fonseca P., Borgonovo-Santos M., Sousa F., Machado L., Vilas-Boas J.P. Accuracy and Repeatability of the Gait Analysis by the WalkinSense System. BioMed Res. Int. 2014;2014:348659. doi: 10.1155/2014/348659. [PMC free article] [PubMed] [CrossRef] [Google Scholar]107. Weizman Y., Tan A.M., Fuss F.K. Accuracy of Centre of Pressure Gait Measurements from Two Pressure-Sensitive Insoles. MDPI Proc. 2018;2:277. doi: 10.3390/proceedings2060277. [CrossRef] [Google Scholar]108. Mohd-Yasin F., Nagel D.J., Korman E.C. Noise in MEMS. Meas. Sci. Technol. 2009;21:012001. doi: 10.1088/0957-0233/21/1/012001. [CrossRef] [Google Scholar]109. Yu Y., Han F., Bao Y., Ou J. A Study on Data Loss Compensation of WiFi-Based Wireless Sensor Networks for Structural Health Monitoring. IEEE Sensors J. 2015;16:3811–3818. doi: 10.1109/JSEN.2015.2512846. [CrossRef] [Google Scholar]110. ElAmrawy F., Nounou M.I. Are Currently Available Wearable Devices for Activity Tracking and Heart Rate Monitoring Accurate, Precise, and Medically Beneficial? Health Inform. Res. 2015;21:315–320. doi: 10.4258/hir.2015.21.4.315. [PMC free article] [PubMed] [CrossRef] [Google Scholar]111. Pardamean B., Soeparno H., Mahesworo B., Budiarto A., Baurley J. Comparing the Accuracy of Multiple Commercial Wearable Devices: A Method. Procedia Comput. Sci. 2019;157:567–572. doi: 10.1016/j.procs.2019.09.015. [CrossRef] [Google Scholar]112. Mardonova M., Choi Y. Review of Wearable Device Technology and Its Applications to the Mining Industry. Energies. 2018;11:547. doi: 10.3390/en11030547. [CrossRef] [Google Scholar]113. Ra H.-K., Ahn J., Yoon H.J., Yoon D., Son S.H., Ko J. I am a “Smart” watch, Smart Enough to Know the Accuracy of My Own Heart Rate Sensor; Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications; Sonoma, CA, USA. 21–22 February 2017; pp. 49–54. [CrossRef] [Google Scholar]114. Ciuti G., Ricotti L., Menciassi A., Dario P. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy. Sensors. 2015;15:6441–6468. doi: 10.3390/s150306441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]115. Bieber G., Haescher M., Vahl M. Sensor requirements for activity recognition on smart watches; Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments; Rhodes, Greece. 29–31 May 2013; pp. 1–6. [CrossRef] [Google Scholar]116. Khoshnoud F., De Silva C.W. Recent advances in MEMS sensor technology-mechanical applications. IEEE Instrum. Meas. Mag. 2012;15:14–24. doi: 10.1109/MIM.2012.6174574. [CrossRef] [Google Scholar]117. Ghomian T., Mehraeen S. Survey of energy scavenging for wearable and implantable devices. Energy. 2019;178:33–49. doi: 10.1016/j.energy.2019.04.088. [CrossRef] [Google Scholar]118. Ching K.W., Singh M.M. Wearable Technology Devices Security and Privacy Vulnerability Analysis. Int. J. Netw. Secur. Appl. 2016;8:19–30. doi: 10.5121/ijnsa.2016.8302. [CrossRef] [Google Scholar]119. Byrom B., Watson C., Doll H., Coons S.J., Eremenco S., Ballinger R., Mc Carthy M., Crescioni M., O’Donohoe P., Howry C. Selection of and Evidentiary Considerations for Wearable Devices and Their Measurements for Use in Regulatory Decision Making: Recommendations from the ePRO Consortium. Value Health. 2018;21:631–639. doi: 10.1016/j.jval.2017.09.012. [PubMed] [CrossRef] [Google Scholar]120. Patel S., Park H., Bonato P., Chan L., Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21. [PMC free article] [PubMed] [CrossRef] [Google Scholar]121. Ameri S.K., Hongwoo J., Jang H., Tao L., Wang Y., Wang L., Schnyer D.M., Akinwande D., Lu N. Graphene Electronic Tattoo Sensors. ACS Nano. 2017;11:7634–7641. doi: 10.1021/acsnano.7b02182. [PubMed] [CrossRef] [Google Scholar]122. Chandel V., Sinharay A., Ahmed N., Ghose A. Exploiting IMU Sensors for IOT Enabled Health Monitoring; Proceedings of the First Workshop on IoT-Enabled Healthcare and Wellness Technologies and Systems; Singapore. 30 June 2016; pp. 21–22. [CrossRef] [Google Scholar]123. Healthcare-in-Europe Smart Watches and Fitness Trackers Useful but May Increase Anxiety. [(accessed on 23 February 2021)]; Available online: https://healthcare-in-europe.com/en/news/smart-watches-fitness-trackers-useful-but-may-increase-anxiety.html.124. Andersen T.O., Langstrup H., Lomborg S. Experiences with Wearable Activity Data during Self-Care by Chronic Heart Patients: Qualitative Study. J. Med. Internet Res. 2020;22:e15873. doi: 10.2196/15873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]125. Zawn Villines L. Mood Tracker Apps_ Learn More About Some of the Best Options Here. Medical News Today. [(accessed on 3 August 2021)];2020 Available online: www.medicalnewstoday.com/articles/mood-tracker-app.126. Mendu S., Baee S. Redesigning the Quantified Self Ecosystem with Mental Health in Mind. ACM; Honolulu, HI, USA: 2020. [CrossRef] [Google Scholar]127. Majumdar N. Quantified Self Detecting and Resolving Depression by Your Mobile Phone–Emberify Blog. [(accessed on 5 February 2021)]; Available online: https://emberify.com/blog/quantified-self-depression/128. Projects Institute for Health Metrics and Evaluation. [(accessed on 10 May 2021)];2016 Available online: www.healthdata.org/projects.129. Cilliers L. Wearable devices in healthcare: Privacy and information security issues. Health Inf. Manag. J. 2019;49:150–156. doi: 10.1177/1833358319851684. [PubMed] [CrossRef] [Google Scholar]130. Tawalbeh L., Muheidat F., Tawalbeh M., Quwaider M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020;10:4102. doi: 10.3390/app10124102. [CrossRef] [Google Scholar]131. Kapoor V., Singh R., Reddy R., Churi P. Privacy Issues in Wearable Technology: An Intrinsic Review; Proceedings of the International Conference on Innovative Computing and Communication (ICICC-2020); New Delhi, India. 21–23 February 2020; [CrossRef] [Google Scholar]132. Sankar R., Le X., Lee S., Wang D. Implantable Sensor Systems for Medical Applications. Woodhead Publishing; Sawston, UK: 2013. Protection of data confidentiality and patient privacy in medical sensor networks; pp. 279–298. [CrossRef] [Google Scholar]133. Alrababah Z. Privacy and Security of Wearable Devices. December 2020. [(accessed on 10 May 2021)]; Available online: https://www.researchgate.net/publication/347558128_Privacy_and_Security_of_Wearable_Devices.134. Paul G., Irvine J. Privacy Implications of Wearable Health Devices; Proceedings of the 7th International Conference on Security of Information and Networks; Glasgow, Scotland, UK. 9–11 September 2014; New York, NY, USA: Association for Computing Machinery; 2014. [CrossRef] [Google Scholar]135. Nguyen T., Gupta S., Venkatesh S., Phung D. Nonparametric discovery of movement patterns from accelerometer signals. Pattern Recognit. Lett. 2016;70:52–58. doi: 10.1016/j.patrec.2015.11.003. [CrossRef] [Google Scholar]136. Ushmani A. Machine Learning Pattern Matching. J. Comput. Sci. Trends Technol. 2019;7:4–7. doi: 10.13140/RG.2.2.16276.96649. [CrossRef] [Google Scholar]137. Pendlimarri D., Petlu P.B.B. Novel Pattern Matching Algorithm for Single Pattern Matching. Int. J. Comput. Sci. Eng. 2010;2:2698–2704. [Google Scholar]138. Sarkania V.K., Bhalla V.K. Android Internals. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2013;3:143–147. [Google Scholar]139. Mohammed M., Khan M.B., Bashie E.B.M. Machine Learning: Algorithms and Applications. CRC Press; Boca Raton, FL, USA: 2016. [Google Scholar]140. Gmyzin D. Master’s Thesis. Technological University Dublin; Dublin, Ireland: 2017. A Comparison of Supervised Machine Learning Classification Techniques and Theory-Driven Approaches for the Prediction of Subjective Mental Workload Subjective Mental. [Google Scholar]141. Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J.O., Olakanmi O., Akinjobi J. Supervised Machine Learning Algorithms: Classification and Comparison. Int. J. Comput. Trends Technol. 2017;48:128–138. doi: 10.14445/22312803/ijctt-v48p126. [CrossRef] [Google Scholar]142. Rajoub B. Biomedical Signal Processing and Artificial Intelligence in Healthcare. Academic Press; Cambridge, MA, USA: 2020. Supervised and unsupervised learning; pp. 51–89. [CrossRef] [Google Scholar]143. Rani S., Babbar H., Coleman S., Singh A. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones. Sensors. 2021;21:3845. [PMC free article] [PubMed] [Google Scholar]144. Pietroni F., Casaccia S., Revel G.M., Scalise L. Methodologies for continuous activity classification of user through wearable devices: Feasibility and preliminary investigation; Proceedings of the 2016 IEEE Sensors Applications Symposium (SAS); Catania, Italy. 20–22 April 2016; pp. 1–6. [CrossRef] [Google Scholar]145. Ben-gal I. Data Mining and Knowledge Discovery Handbook. Springer; New York, NY, USA: 2014. Outlier detection Irad Ben-Gal Department of Industrial Engineering; p. 11. [CrossRef] [Google Scholar]146. Colpas P.A., Vicario E., De-La-Hoz-Franco E., Pineres-Melo M., Oviedo-Carrascal A., Patara F. Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. Sensors. 2020;20:2702. doi: 10.3390/s20092702. [PMC free article] [PubMed] [CrossRef] [Google Scholar]147. Hailat Z., Komarichev A., Chen X.-W. Deep Semi-Supervised Learning; Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR); Beijing, China. 20–24 August 2018; pp. 2154–2159. [CrossRef] [Google Scholar]148. Stikic M., Larlus D., Schiele B. Multi-graph Based Semi-supervised Learning for Activity Recognition; Proceedings of the 2009 International Symposium on Wearable Computers; Linz, Austria. 4–7 September 2009; pp. 85–92. [CrossRef] [Google Scholar]149. Lee J., Bahri Y., Novak R., Schoenholz S.S., Pennington J., Sohl-Dickstein J. Deep neural networks as gaussian processes. arXiv. 20171711.00165 [Google Scholar]150. Xu H., Li L., Fang M., Zhang F. Movement Human Actions Recognition Based on Machine Learning. Int. J. Online Eng. (iJOE) 2018;14:193–210. doi: 10.3991/ijoe.v14i04.8513. [CrossRef] [Google Scholar]151. Fu A., Yu Y. Real-Time Gesture Pattern Classification with IMU Data. [(accessed on 3 August 2021)];2017 Available online: http://stanford.edu/class/ee267/Spring2017/report_fu_yu.pdf.152. Bujari A., Licar B., Palazzi C.E. Movement pattern recognition through smartphone’s accelerometer; Proceedings of the 2012 IEEE Consumer Communications and Networking Conference (CCNC); Las Vegas, NV, USA. 14–17 January 2012; pp. 502–506. [CrossRef] [Google Scholar]153. Baca A. Methods for Recognition and Classification of Human Motion Patterns—A Prerequisite for Intelligent Devices Assisting in Sports Activities. IFAC Proc. Vol. 2012;45:55–61. doi: 10.3182/20120215-3-AT-3016.00009. [CrossRef] [Google Scholar]154. Farhan H., Al-Muifraje M.H., Saeed T.R. A new model for pattern recognition. Comput. Electr. Eng. 2020;83:106602. doi: 10.1016/j.compeleceng.2020.106602. [CrossRef] [Google Scholar]155. Harvey S., Harvey R. An introduction to artificial intelligence. Appita J. 2016;51:20–24. [Google Scholar]156. Neapolitan R.E., Jiang X. Neural Networks and Deep Learning. Determination Press; San Francisco, CA, USA: 2018. pp. 389–411. [CrossRef] [Google Scholar]157. Maurer U., Smailagic A., Siewiorek D., Deisher M. Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions; Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06); Cambridge, MA, USA. 3–5 April 2006; pp. 113–116. [CrossRef] [Google Scholar]158. Lara D., Labrador M.A. A mobile platform for real-time human activity recognition; Proceedings of the 2012 IEEE Consumer Communications and Networking Conference (CCNC); Las Vegas, NV, USA. 14–17 January 2012; pp. 667–671. [CrossRef] [Google Scholar]159. Tapia E.M., Intille S.S., Haskell W., Larson K., Wright J., King A., Friedman R. Real-time recognition of physical activities and theirintensities using wireless accelerometers and a heart monitor; Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers; Boston, MA, USA. 11–13 October 2007. [Google Scholar]160. Tzu-Ping K., Che-Wei L., Jeen-Shing W. Development of a portable activity detector for daily activity recognition; Proceedings of the IEEE International Symposium on Industrial Electronics; Seoul, Korea. 5–8 July 2009; pp. 115–122. [Google Scholar]161. Bhat G., Deb R., Ogras U.Y. OpenHealth: Open-Source Platform for Wearable Health Monitoring. IEEE Des. Test. 2019;36:27–34. doi: 10.1109/MDAT.2019.2906110. [CrossRef] [Google Scholar]162. Nakamura Y., Matsuda Y., Arakawa Y., Yasumoto K. WaistonBelt X:A Belt-Type Wearable Device with Sensing and Intervention Toward Health Behavior Change. Sensors. 2019;19:4600. doi: 10.3390/s19204600. [PMC free article] [PubMed] [CrossRef] [Google Scholar]163. Munoz-Organero M. Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs. IEEE Access. 2019;7:74422–74436. doi: 10.1109/ACCESS.2019.2921096. [CrossRef] [Google Scholar]164. Lara O.D., Labrador M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013;15:1192–1209. doi: 10.1109/SURV.2012.110112.00192. [CrossRef] [Google Scholar]165. Kaghyan S., Sarukhanyan H.G. Activity recognitionusing k-nearest neighbor algorithm on smartphone with triaxial accelerometer. Int. J. Inform. Models Anal. 2012;1:146–156. [Google Scholar]166. Arias P., Kelley C., Mason J., Bryant K., Roy K. Classification of User Movement Data; Proceedings of the 2nd International Conference on Digital Signal Processing; Tokyo, Japan. 25–27 February 2018; [CrossRef] [Google Scholar]167. Seok W., Kim Y., Park C. Pattern Recognition of Human Arm Movement Using Deep Reinforcement Learning Intelligent Information System and Embedded Software Engineering. Kwangwoon University; Seoul, Korea: 2018. pp. 917–919. [Google Scholar]168. Gupta S.M., Mujawar A. Tracking and Prediciting Movement Patterns of a Moving Object in Wiresless Sensor Network; Proceedings of the 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI); Tirunelveli, India. 11–12 May 2018; pp. 586–591. [CrossRef] [Google Scholar]169. Zhang Y., Zhang Z., Zhang Y., Bao J., Zhang Y., Deng H. Human Activity Recognition Based on Motion Sensor Using U-Net. IEEE Access. 2019;7:75213–75226. doi: 10.1109/ACCESS.2019.2920969. [CrossRef] [Google Scholar]170. Xu C., Chai D., He J., Zhang X., Duan S. InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE Access. 2019;7:9893–9902. doi: 10.1109/ACCESS.2018.2890675. [CrossRef] [Google Scholar]171. Clouthier A.L., Ross G.B., Graham R.B. Sensor Data Required for Automatic Recognition of Athletic Tasks Using Deep Neural Networks. Front. Bioeng. Biotechnol. 2020;7:473. doi: 10.3389/fbioe.2019.00473. [PMC free article] [PubMed] [CrossRef] [Google Scholar]172. Hwang I., Cha G., Oh S. Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data; Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI); San Diego, CA, USA. 14–16 September 2017; pp. 278–283. [CrossRef] [Google Scholar]173. Gumaei A., Hassan M.M., Alelaiwi A., Alsalman H. A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data. IEEE Access. 2019;7:99152–99160. doi: 10.1109/ACCESS.2019.2927134. [CrossRef] [Google Scholar]174. Karungaru S. Human action recognition using wearable sensors and neural networks; Proceedings of the 2015 10th Asian Control Conference (ASCC); Kota Kinabalu, Malaysia. 31 May–3 June 2015; pp. 1–4. [CrossRef] [Google Scholar]175. Choi A., Jung H., Mun J.H. Single Inertial Sensor-Based Neural Networks to Estimate COM-COP Inclination Angle during Walking. Sensors. 2019;19:2974. doi: 10.3390/s19132974. [PMC free article] [PubMed] [CrossRef] [Google Scholar]176. Xie B., Li B., Harland A. Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology; Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition; Beijing, China. 18–20 August 2018; pp. 26–31. [CrossRef] [Google Scholar]177. Nguyen T., Gupta S., Venkatesh S., Phung D. A Bayesian Nonparametric Framework for Activity Recognition Using Accelerometer Data; Proceedings of the 2014 22nd International Conference on Pattern Recognition; Stockholm, Sweden. 24–28 August 2014; pp. 2017–2022. [CrossRef] [Google Scholar]178. Cheng L., You C., Guan Y., Yu Y. Body activity recognition using wearable sensors; Proceedings of the 2017 Computing Conference; London, UK. 18–20 July 2017; pp. 756–765. [CrossRef] [Google Scholar]179. Chen Y., Guo M., Wang Z. An improved algorithm for human activity recognition using wearable sensors; Proceedings of the 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI); Chiang Mai, Thailand. 14–16 February 2016; pp. 248–252. [CrossRef] [Google Scholar]180. Mekruksavanich S., Jitpattanakul A. Classification of Gait Pattern with Wearable Sensing Data; Proceedings of the 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering; Nan, Thailand. 30 January–2 February 2019; pp. 137–141. [CrossRef] [Google Scholar]181. Hachaj T., Piekarczyk M. Evaluation of Pattern Recognition Methods for Head Gesture-Based Interface of a Virtual Reality Helmet Equipped with a Single IMU Sensor. Sensors. 2019;19:5408. doi: 10.3390/s19245408. [PMC free article] [PubMed] [CrossRef] [Google Scholar]182. Kim M., Cho J., Lee S., Jung Y. IMU Sensor-Based Hand Gesture Recognition for Human-Machine Interfaces. Sensors. 2019;19:3827. doi: 10.3390/s19183827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]183. DiLiberti N., Peng C., Kaufman C., Dong Y., Hansberger J.T. Real-Time Gesture Recognition Using 3D Sensory Data and a Light Convolutional Neural Network; Proceedings of the 27th ACM International Conference on Multimedia; Nice, France. 21–25 February 2019; pp. 401–410. [CrossRef] [Google Scholar]184. Alavi S., Arsenault D., Whitehead A. Quaternion-Based Gesture Recognition Using Wireless Wearable Motion Capture Sensors. Sensors. 2016;16:605. doi: 10.3390/s16050605. [PMC free article] [PubMed] [CrossRef] [Google Scholar]185. Santhoshkumar R., Geetha M.K. Deep Learning Approach for Emotion Recognition from Human Body Movements with Feedforward Deep Convolution Neural Networks. Procedia Comput. Sci. 2019;152:158–165. doi: 10.1016/j.procs.2019.05.038. [CrossRef] [Google Scholar]186. Hu B., Dixon P.C., Jacobs J., Dennerlein J., Schiffman J. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. J. Biomech. 2018;71:37–42. doi: 10.1016/j.jbiomech.2018.01.005. [PubMed] [CrossRef] [Google Scholar]187. Lin W.-Y., Verma V.K., Lee M.-Y., Lai C.-S. Activity Monitoring with a Wrist-Worn, Accelerometer-Based Device. Micromachines. 2018;9:450. doi: 10.3390/mi9090450. [PMC free article] [PubMed] [CrossRef] [Google Scholar]188. Estévez P.A., Held C.M., Holzmann C.A., Perez C.A., Pérez J.P., Heiss J., Garrido M., Peirano P. Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med. Biol. Eng. Comput. 2002;40:105–113. doi: 10.1007/BF02347703. [PubMed] [CrossRef] [Google Scholar]189. Procházka A., Kuchyňka J., Vyšata O., Cejnar P., Vališ M., Mařík V. Multi-Class Sleep Stage Analysis and Adaptive Pattern Recognition. Appl. Sci. 2018;8:697. doi: 10.3390/app8050697. [CrossRef] [Google Scholar]190. Gandhi R. Introduction to Machine Learning Algorithms: Linear Regression. Toward Data Science. [(accessed on 3 August 2021)];2018 Available online: https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a.191. Duffy S.A. HHS Public Access Author manuscript. J. Community Health. 2013;38:597–602. doi: 10.1007/s10900-013-9656-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]192. Migueles J.H., Rowlands A.V., Huber F., Sabia S., Van Hees V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes from Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019;2:188–196. doi: 10.1123/jmpb.2018-0063. [CrossRef] [Google Scholar]193. Kim Y., Hibbing P., Saint-Maurice P.F., Ellingson L.D., Hennessy E., Wolff-Hughes D.L., Perna F.M., Welk G.J. Surveillance of Youth Physical Activity and Sedentary Behavior with Wrist Accelerometry. Am. J. Prev. Med. 2017;52:872–879. doi: 10.1016/j.amepre.2017.01.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]194. Cole-kripke T., Daniel F., Sadeh T. ActiGraph White Paper Actigraphy Sleep Scoring Algorithms. [(accessed on 3 August 2021)];1992 Available online: https://actigraphcorp.com/195. Quante M., Kaplan E.R., Cailler M., Rueschman M., Wang R., Weng J., Taveras E.M., Redline S. Actigraphy-based sleep estimation in adolescents and adults: A comparison with polysomnography using two scoring algorithms. Nat. Sci. Sleep. 2018;10:13–20. doi: 10.2147/NSS.S151085. [PMC free article] [PubMed] [CrossRef] [Google Scholar]196. Haghayegh S., Khoshnevis S., Smolensky M.H., Diller K.R., Castriotta R.J. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chrono. Int. 2019;36:1752–1760. doi: 10.1080/07420528.2019.1679826. [PubMed] [CrossRef] [Google Scholar]197. Lee P.H., Suen L.K.P. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Sleep Breath. 2016;21:209–215. doi: 10.1007/s11325-016-1406-0. [PubMed] [CrossRef] [Google Scholar]