Author(s):
- Sarah Jakowski
Abstract:
Self-tracking technologies are possible approaches to support recovery self-management activities for athletes. These may have become even more appealing due to stay-at-home restrictions as part of the 2020 pandemic regulations. This study examined user behaviour of smartphone and wearable technologies among 217 athletes (29% women, M age = 26.9 ± 7 years). The online survey comprised demographic questions and standardised questionnaires to assess usage of technologies, sleep quality (Pittsburgh Sleep Quality Index), daytime sleepiness (Epworth Sleepiness Scale), attitudes about sleep (Dysfunctional Beliefs and Attitudes about Sleep Scale), bedtime procrastination (Bedtime Procrastination Scale), and self-control (Brief Self-Control Scale). Fitness apps (46.5%) were more popular than sleep apps (15.7%) followed by nutrition apps (12%). The correlation between sleep apps and the other two apps indicate that non-users of sleep apps are probably also non-users of fitness or nutrition apps. Wearables were more frequently used to track fitness activities (36.9%) than sleep (17.5%). Considering sex, type of sport, competition participation, and training volume, no remarkable characteristics among users versus non-users of sleep apps were identified. There were also no significant differences among sleep indices between sleep app users and non-users. However, self-control was highest among sleep app users compared to non-users (d = 0.58). Despite 34.1% being identified as poor sleepers, behavioural sleeping patterns were within normal range. The results imply that athletes are not as attracted to self-tracking technologies as expected, which makes them less vulnerable to unsubstantiated feedback and inappropriate interventions by those tools. This serves as a starting point to explore the potential of self-tracking ambulatory assessment for physical activity and sleep behaviour of athletes in the post-pandemic era.
Documentation:
https://doi.org/10.1007/s12662-022-00812-3
References:
Balk, Y. A., & Englert, C. (2020). Recovery self-regulation in sport: Theory, research, and practice. International Journal of Sports Science & Coaching, 15, 273–281. https://doi.org/10.1177/1747954119897528.
Baron, K. G., Abbott, S., Jao, N., Manalo, N., & Mullen, R. (2017). Orthosomnia: Are some patients taking the quantified self too far? Journal of Clinical Sleep Medicine, 13, 351–354. https://doi.org/10.5664/jcsm.6472.
Bender, A. M., Van Dongen, H. P. A., & Samuels, C. H. (2019). Sleep quality and chronotype differences between elite athletes and non-athlete controls. Clocks & Sleep, 1(1), 3–12. https://doi.org/10.3390/clockssleep1010002.
Bertrams, A., & Dickhäuser, O. (2009). Messung dispositioneller Selbstkontroll-Kapazität. Diagnostica, 55(1), 2–10. https://doi.org/10.1026/0012-1924.55.1.2.
Bloch, K. E., Schoch, O. D., Zhang, J. N., & Russi, E. W. (1999). German version of the Epworth Sleepiness Scale. Respiration, 66, 440–447. https://doi.org/10.1159/000029408.
Blume, C., Schmidt, M. H., & Cajochen, C. (2020). Effects of the COVID-19 lockdown on human sleep and rest-activity rhythms. Current Biology, 30, R795–R797. https://doi.org/10.1016/j.cub.2020.06.021.
Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28, 193–213. https://doi.org/10.1016/0165-1781(89)90047-4.
Capodilupo, E. R., & Miller, D. J. (2021). Changes in health promoting behaviour during COVID-19 physical distancing: Utilizing wearable technology to examine trends in sleep, activity, and cardiovascular indicators of health. PLoS ONE, 16(8), e256063. https://doi.org/10.1371/journal.pone.0256063.
Carney, C. E., Edinger, J. D., Morin, C. M., Manber, R., Rybarczyk, B., Stepanski, E. J., Wright, H., & Lack, L. (2010). Examining maladaptive beliefs about sleep across insomnia patient groups. Journal of Psychosomatic Research, 68, 57–65. https://doi.org/10.1016/j.jpsychores.2009.08.007.
Choi, Y. K., Demiris, G., Lin, S.-Y., Iribarren, S. J., Landis, C. A., Thompson, H. J., McCurry, S. M., Heitkemper, M. M., & Ward, T. M. (2018). Smartphone applications to support sleep self-management: Review and evaluation. Journal of Clinical Sleep Medicine, 14, 1783–1790. https://doi.org/10.5664/jcsm.7396.
Doherty, R., Madigan, S. M., Nevill, A., Warrington, G., & Ellis, J. G. (2021). The sleep and recovery practices of athletes. Nutrients, 13, 1330. https://doi.org/10.3390/nu13041330.
Facer-Childs, E. R., Hoffman, D., Tran, J. N., Drummond, S. P. A., & Rajaratnam, S. M. W. (2021). Sleep and mental health in athletes during COVID-19 lockdown. Sleep, 44(5), zsaa261. https://doi.org/10.1093/sleep/zsaa261.
di Fronso, S., Costa, S., Montesano, C., Di Gruttola, F., Ciofi, E. G., Morgilli, L., Robazza, C., & Bertollo, M. (2022). The effects of COVID-19 pandemic on perceived stress and psychobiosocial states in Italian athletes. International Journal of Sport and Exercise Psychology, 20(1), 79-91. https://doi.org/10.1080/1612197X.2020.1802612.
Grigsby-Toussant, D. S., Shin, J. C., Reeves, D. M., Beattie, A., Auguste, E., & Jean-Louis, G. (2017). Sleep apps and behavioral constructs: A content analysis. Preventive Medicine Reports, 6, 126–129. https://doi.org/10.1016/j.pmedr.2017.02.018.
Halson, S. L. (2019). Sleep monitoring in athletes: Motivation, methods, miscalculations and why it matters. Sports Medicine, 49, 1487–1497. https://doi.org/10.1007/s40279-019-01119-4.
Halson, S. L., & Lastella, M. (2017). Amazing athletes with ordinary habits: Why is changing behavior so difficult? International Journal of Sports Physiology and Performance, 12, 1273–1274. https://doi.org/10.1123/ijspp.2017-0632.
Herzog-Krzywoszanska, R., & Krzywoszanski, L. (2019). Bedtime procrastination, sleep-related beahviors, and demographic factors in an online survey on a Polish sample. Frontiers in Neuroscience, 13, 963. https://doi.org/10.3389/fnins.2019.00963.
Hiller, R. M., Johnston, A., Dohnt, H., Lovato, N., & Gradisar, M. (2015). Assessing cognitive processes related to insomnia: A review and measurement guide for Harvey’s cognitive model for the maintenance of insomnia. Sleep Medicine Reviews, 23, 46–53. https://doi.org/10.1016/j.smrv.2014.11.006.
Hinz, A., Glaesmer, H., Brähler, E., Löffler, M., Engel, C., Enzenbach, C., Hegerl, U., & Sander, C. (2017). Sleep quality in the general population: Psychometric properties of the Pittsburgh Sleep Quality Index, derived from a German community sample of 9284 people. Sleep Medicine, 30, 57–63. https://doi.org/10.1016/j.sleep.2016.03.008.
Hof zum Berge, A., Kellmann, M., Kallweit, U., Mir, S., Gieselmann, A., Meyer, T., Ferrauti, A., Pfeiffer, M., & Kölling, S. (2020). Portable PSG for sleep stage monitoring in sports: Assessment of SOMNOwatch pluss EEG. European Journal of Sport Science, 20, 713–721. https://doi.org/10.1080/17461391.2019.1659421.
Ibáñez, A., Silva, J., & Cauli, O. (2018). A survey on sleep assessment methods. Peer J, 6, e4849. https://doi.org/10.7717/peerj.4849.
Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth Sleepiness Scale. Sleep, 14, 540–545. https://doi.org/10.1093/sleep/14.6.540.
Jurecka, A., Skucińska, P., & Gądek, A. (2021). Impact of the SARS-CoV‑2 coronavirus pandemic on physical activity, mental health and quality of life in professional athletes—A systematic review. International Journal of Environmental Research and Public Health, 18(17), 9423. https://doi.org/10.3390/ijerph18179423.
Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S. L., Hecksteden, A., Heidari, J., Kallus, K. W., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and performance in sport: Consensus statement. International Journal of Sports Physiology and Performance, 13, 240–245. https://doi.org/10.1123/ijspp.2017-0759.
Khosla, S., Deak, M. C., Gault, D., Goldstein, C. A., Hwang, D., Kwon, Y., O’Hearn, D., Schutte-Rodin, S., Yurcheshen, M., Rosen, I., Kirsch, D. B., Chervin, R. D., Carden, K. A., Ramar, K., Aurora, N., Kristo, D. A., Malhotra, R. K., Martin, J. L., Olson, E. J., Rosen, C. L., & Rowley, J. A. (2018). Consumer sleep technology: An American Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 13, 877–880. https://doi.org/10.5664/jcsm.7128.
Ko, P.-R., Kientz, J. A., Choe, E. K., Kay, M., Landis, C. A., & Watson, N. F. (2015). Consumer sleep technologies: A review of the landscape. Journal of Clinical Sleep Medicine, 11, 1455–1461. https://doi.org/10.5664/jcsm.5288.
Kölling, S., & Hof zum Berge, A. (2020). The effects of subjective and objective sleep monitoring on sleep patterns and attitudes. OBM Neurobiology, 4(1). https://doi.org/10.21926/obm.neurobiol.2001052.
Kölling, S., & Kellmann, M. (2020). Current considerations and future directions of psychometric training monitoring of recovery-stress states. Deutsche Zeitschrift für Sportmedizin, 71(2), 29–34. https://doi.org/10.5960/dzsm.2019.408.
Kölling, S., Duffield, R., Erlacher, D., Venter, R., & Halson, S. L. (2019). Sleep-related issues for recovery and performance in athletes. International Journal of Sports Physiology and Performance, 14, 144–148. https://doi.org/10.1123/ijspp.2017-0746.
König, L. M., Sproesser, G., Schupp, H. T., & Renner, B. (2018). Describing the process of adopting nutrition and fitness apps: Behavior stage model approach. JMIR mHealth and uHealth, 6(3), e55. https://doi.org/10.2196/mhealth.8261.
Kroese, F. M., Evers, C., Adriaanse, M. A., & de Ridder, D. T. D. (2016). Bedtime procrastination: A self-regulation perspective on sleep insufficiency in the general population. Journal of Health Psychology, 21, 853–682. https://doi.org/10.1177/1359105314540014.
Kroese, F. M., de Ridder, D. T. D., Evers, C., & Adriaanse, M. A. (2014). Bedtime procrastination: Introducing a new area of procrastination. Frontiers in Psychology, 5, 611. https://doi.org/10.3389/fpsyg.2014.00611.
Morin, C. M., Vallières, A., & Ivers, H. (2007). Dysfunctional Beliefs and Attitudes about Sleep (DBAS): Validation of a brief version (DBAS-16). Sleep, 30, 1547–1554. https://doi.org/10.1093/sleep/30.11.1547.
Reichert, M., Gan, G., Renz, M., Braun, U., Brüßler, S., Timm, I., Ma, R., Berhe, O., Benedyk, A., Moldavski, A., Schweiger, J. I., Hennig, O., Zidda, F., Heim, C., Banaschweski, T., Tost, H., Ebner-Priemer, U. W., & Meyer-Lindenberg, A. (2021). Ambulatory assessment for precision psychiatry: Foundations, current developments and future avenues. Experimental Neurology, 345, 113807. https://doi.org/10.1016/j.expneurol.2021.113807.
Rezaei, N., & Grandner, M. A. (2021). Changes in sleep duration, timing, and variability during the COVID-19 pandemic: Large-scale Fitbit data from 6 major US cities. Sleep Health, 7, 303–313. https://doi.org/10.1016/j.sleh.2021.02.008.
Roomkham, S., Lovell, D., Cheung, J., & Perrin, D. (2018). Promises and challenges in the use of consumer-grade devices for sleep monitoring. IEEE Reviews in Biomedical Engineering, 11, 53–67. https://doi.org/10.1109/RBME.2018.2811735.
Sadeh, A. (2011). The role and validity of actigraphy in sleep medicine: An update. Sleep Medicine Reviews, 15, 259–267. https://doi.org/10.1016/j.smrv.2010.10.001.
Shelgikar, A. V., Anderson, P. F., & Stephens, M. R. (2016). Sleep tracking, wearable technology, and opportunities for research and clinical care. Contemporary Reviews in Sleep Medicine, 150, 732–743. https://doi.org/10.1016/j.chest.2016.04.016.
Sproesser, G., Strohbach, S., Schupp, H., & Renner, B. (2011). Candy or apple? How self-control resources and motives impact dietary healthiness in women. Appetite, 56, 784–787. https://doi.org/10.1016/j.appet.2011.01.028.
Tangney, J. P., Baumeister, R. F., & Boone, A. L. (2004). High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality, 72, 271–324. https://doi.org/10.1111/j.0022-3506.2004.00263.x.
Van den Bulck, J. (2015). Sleep apps and the quantified self: Blessing or curse? Journal of Sleep Research, 24, 121–123. https://doi.org/10.1111/jsr.12270.
Walsh, N. P., Halson, S. L., Sargent, C., Roach, G. D., Nédélec, M., Gupta, L., Leeder, J., Fullagar, H. H., Coutts, A. J., Edwards, B. J., Pullinger, S. A., Robertson, C. M., Burniston, J. G., Lastella, M., LeMeur, Y., Hausswirth, C., Bender, A. M., Grandner, M. A., & Samuels, C. H. (2021). Sleep and the athlete: Narrative review and 2021 expert consensus recommendations. British Journal of Sports Medicine, 55, 356–368. https://doi.org/10.1136/bjsports-2020-102025.
Wang, F., & Bíró, É. (2021). Determinants of sleep quality in college students: A literature review. Explore, 17, 170–177. https://doi.org/10.1016/j.explore.2020.11.003.
Watson, N. F., Lawlor, C., & Raymann, R. (2019). Will consumer sleep technologies change the way we practice sleep medicine? Journal of Clinical Sleep Medicine, 15, 159–161. https://doi.org/10.5664/jcsm.7596.
Weingartz, S., & Pillmann, F. (2009). Meinungen-zum-Schlaf-Fragebogen. Deutsche Version der DBAS-16 zur Erfassung dysfunktionaler Überzeugungen und Einstellungen zum Schlaf. Somnologie, 13, 29–36. https://doi.org/10.1007/s11818-008-0356-6.
Wright Jr., K. P., Linton, S. K., Withrow, D., Casiraghi, L., Lanza, S. M., de la Iglesia, H., Vetter, C., & Depner, C. M. (2020). Sleep in university students prior to and during COVID-19 stay-at-home orders. Current Biology, 30, R797–R798. https://doi.org/10.1016/j.cub.2020.06.022.
Yang, Y., & Koenigstorfer, J. (2020). Determinants of physical activity maintenance during the COVID-19 pandemic: A focus on fitness apps. Translational Behavioral Medicine, 10, 835–842. https://doi.org/10.1093/tbm/ibaa086.