Author(s):

  • Oresti Banos
  • Muhammad Bilal Amin
  • Wajahat Ali Khan
  • Muhammad Afzal
  • Maqbool Hussain

Abstract:

Background

The provision of health and wellness care is undergoing an enormous transformation. A key element of this revolution consists in prioritizing prevention and proactivity based on the analysis of people’s conducts and the empowerment of individuals in their self-management. Digital technologies are unquestionably destined to be the main engine of this change, with an increasing number of domain-specific applications and devices commercialized every year; however, there is an apparent lack of frameworks capable of orchestrating and intelligently leveraging, all the data, information and knowledge generated through these systems.

Methods

This work presents Mining Minds, a novel framework that builds on the core ideas of the digital health and wellness paradigms to enable the provision of personalized support. Mining Minds embraces some of the most prominent digital technologies, ranging from Big Data and Cloud Computing to Wearables and Internet of Things, as well as modern concepts and methods, such as context-awareness, knowledge bases or analytics, to holistically and continuously investigate on people’s lifestyles and provide a variety of smart coaching and support services.

Results

This paper comprehensively describes the efficient and rational combination and interoperation of these technologies and methods through Mining Minds, while meeting the essential requirements posed by a framework for personalized health and wellness support. Moreover, this work presents a realization of the key architectural components of Mining Minds, as well as various exemplary user applications and expert tools to illustrate some of the potential services supported by the proposed framework.

Conclusions

Mining Minds constitutes an innovative holistic means to inspect human behavior and provide personalized health and wellness support. The principles behind this framework uncover new research ideas and may serve as a reference for similar initiatives.

Documentation:

https://doi.org/10.1186/s12938-016-0179-9

References:
  1. Hafner T, Shiffman J. The emergence of global attention to health systems strengthening. Health Policy Plan. 2013;28(1):41–50.Article  Google Scholar 
  2. Hood L, Flores M. A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. N Biotechnol. 2012;29(6):613–24.Article  Google Scholar 
  3. Matheson EM, King DE, Everett CJ. Healthy lifestyle habits and mortality in overweight and obese individuals. J Am Board of Fam Med. 2012;25(1):9–15.Article  Google Scholar 
  4. Gillen MM, Markey CN, Markey PM. An examination of dieting behaviors among adults: links with depression. Eat Behav. 2012;13(2):88–93.Article  Google Scholar 
  5. Demark-Wahnefried W, Jones LW. Promoting a healthy lifestyle among cancer survivors. Hematol Oncol Clin North Am. 2008;22(2):319–42.Article  Google Scholar 
  6. Swan M. Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. J Pers Med. 2012;2(3):93–118.MathSciNet Article  Google Scholar 
  7. Powell AC, Landman AB, Bates DW. In search of a few good apps. JAMA. 2014;311(18):1851–2.Article  Google Scholar 
  8. Withings Activité. http://www.withings.com/eu/en/products/activite. Accessed 29 Aug 2015.
  9. Garmin Vivofit. http://sites.garmin.com/en-US/vivo/vivofit/. Accessed 29 Aug 2015.
  10. Fitbit Surge. https://www.fitbit.com/surge. Accessed 29 Aug 2015.
  11. Misfit Shine. http://www.misfitwearables.com/products/shine. Accessed 29 Aug 2015.
  12. Banos O, Villalonga C, Damas M, Gloesekoetter P, Pomares H, Rojas I. Physiodroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring. ScientificWorldJournal. 2014;2014(490824):1–11.Article  Google Scholar 
  13. Oresko JJ, Jin Z, Cheng J, Huang S, Sun Y, Duschl H, Cheng AC. A wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans Inf Technol Biomed. 2010;14(3):734–40.Article  Google Scholar 
  14. Hermens H, op den Akker H, Tabak M, Wijsman J, Vollenbroek M. Personalized coaching systems to support healthy behavior in people with chronic conditions. J Electromyogr Kinesiol. 2014;24(6):815–26.Article  Google Scholar 
  15. Chen P-H, Chen H-M. Framework design-integrating an android open platform with multi-interface biomedical modules for physiological measurement. J Converg Inf Technol. 2012;7(12):310–9.Article  Google Scholar 
  16. Fortino G, Giannantonio R, Gravina R, Kuryloski P, Jafari R. Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans Hum Mach Syst. 2013;43(1):115–33.Article  Google Scholar 
  17. Gaggioli A, Pioggia G, Tartarisco G, Baldus G, Corda D, Cipresso P, Riva G. A mobile data collection platform for mental health research. Personal Ubiquitous Comput. 2013;17(2):241–51.Article  Google Scholar 
  18. Yang G, Xie L, Mantysalo M, Zhou X, Pang Z, Xu LD, Kao-Walter S, Chen Q, Zheng L-R. A health-iot platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans Indus Inf. 2014;10(4):2180–91.Article  Google Scholar 
  19. Banos O, Villalonga C, Garcia R, Saez A, Damas M, Holgado JA, Lee S, Pomares H, Rojas I. Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomed Eng Online 2015;14(S2:S6),1–20.
  20. Estrin D, Sim I. Open mhealth architecture: an engine for health care innovation. Science. 2010;330(6005):759–60.Article  Google Scholar 
  21. Google Fit. https://developers.google.com/fit/overview. Accessed 29 Aug 2015.
  22. Sami S. https://developer.samsungsami.io/sami/sami-documentation/. Accessed 29 Aug 2015.
  23. Apple HealthKit. https://developer.apple.com/healthkit/. Accessed 29 Aug 2015.
  24. Banos O, Bilal-Amin M, Ali-Khan W, Afzel M, Ahmad M, Ali M, Ali T, Ali R, Bilal M, Han M, Hussain J, Hussain M, Hussain S, Hur TH, Bang JH, Huynh-The T, Idris M, Kang DW, Park SB, Siddiqui M, Vui L-B, Fahim M, Khattak A-M, Kang B-H, Lee S. An innovative platform for person-centric health and wellness support. In: Proceedings of the international work-conference on bioinformatics and biomedical engineering; 2015.
  25. Banos O, Bilal-Amin M, Ali-Khan W, Afzel M, Ali T, Kang B-H, Lee S. Mining minds: an innovative framework for personalized health and wellness support. In: Proceedings of the 9th international conference on pervasive computing technologies for healthcare (PervasiveHealth 2015); 2015.
  26. Banos O, Bang JH, Hur TH, Siddiqui M, Huynh-The T, Vui L-B, Ali-Khan W, Ali T, Villalonga C, Lee S. Mining human behavior for health promotion. In: Proceedings of the 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC 2015); 2015.
  27. Microsoft Azure. http://azure.microsoft.com. Accessed 29 August 2015.
  28. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A. Xen and the art of virtualization. ACM SIGOPS Oper Sys Rev. 2003;37(5):164–77.Article  Google Scholar 
  29. Padhy RP. Big data processing with hadoop-mapreduce in cloud systems. Int J Cloud Comput Serv Sci. 2012;2(1):16–27. Google Scholar 
  30. Microsoft Windows Server. http://www.microsoft.com/en-us/server-cloud/products/windows-server-2012-r2/. Accessed 29 August 2015.
  31. Richardson L, Ruby S. RESTful web services. Sebastopol: O’Reilly Media Inc; 2008. Google Scholar 
  32. Kim K, Kim C, Jung S-I, Shin H-S, Kim J-S. Inter-domain socket communications supporting high performance and full binary compatibility on xen. In: Proceedings of the Fourth ACM SIGPLAN/SIGOPS international conference on virtual execution environments; 2008. p. 11–20.
  33. Microsoft SQL Server. http://www.microsoft.com/en-us/server-cloud/products/sql-server/. Accessed on 29 Aug 2015.
  34. Banos O, Damas M, Pomares H, Rojas F, Delgado-Marquez B, Valenzuela O. Human activity recognition based on a sensor weighting hierarchical classifier. Soft Comput. 2013;17:333–43.Article  Google Scholar 
  35. Lara O, Labrador M. A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutor. 2012;99,1–18. Google Scholar 
  36. Banos O, Galvez J-M, Damas M, Pomares H, Rojas I. Window size impact in human activity recognition. Sensors. 2014;14(4):6474–99.Article  Google Scholar 
  37. Preece SJ, Goulermas JY, Kenney LPJ, Howard D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng. 2009;56(3):871–9.Article  Google Scholar 
  38. Han M, Vinh LT, Lee Y-K, Lee S. Comprehensive context recognizer based on multimodal sensors in a smartphone. Sensors. 2012;12(9):12588–605.Article  Google Scholar 
  39. Banos O, Damas M, Pomares H, Prieto A, Rojas I. Daily living activity recognition based on statistical feature quality group selection. Expert Syst Appl. 2012;39(9):8013–21.Article  Google Scholar 
  40. Ali T, Hussain M, Ali Khan W, Afzal M, Lee S. Authoring tool: acquiring sharable knowledge for Smart CDSS. In: International conference of the IEEE engineering in medicine and biology society; 2013, p. 1278–81.
  41. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 compendium of physical activities: a second update of codes and met values. Med Sci Sports Exerc. 2011;43(8):1575–81.Article  Google Scholar 
  42. Forgy CL. Rete: A fast algorithm for the many pattern/many object pattern match problem. Artif Intell. 1982;19(1):17–37.Article  Google Scholar 
  43. Schofield W. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1984;39:5–41. Google Scholar 
  44. Baget J-F. Improving the forward chaining algorithm for conceptual graphs rules. In: International conference on principles of knowledge representation and reasoning; 2004, p. 407–14.
  45. Gong S. Learning user interest model for content-based filtering in personalized recommendation system. Int J Digit Content Technol Appl. 2012;6(11):155–62.Article  Google Scholar 
  46. Daemen J, Rijmen V. The design of rijndael: AES—the advanced encryption standard. Heidelberg: Springer; 2002.Book MATH  Google Scholar 
  47. Zhong S, Chen T. An efficient identity-based protocol for private matching. Int J Commun Syst. 2011;24(4):543–52.MathSciNet Article  Google Scholar 
  48. Ghinita G, Karras P, Kalnis P, Mamoulis N. A framework for efficient data anonymization under privacy and accuracy constraints. ACM Trans Database Syst. 2009;34(2):9.Article  Google Scholar 
  49. Pervez Z, Awan AA, Khattak AM, Lee S, Huh E-N. Privacy-aware searching with oblivious term matching for cloud storage. J Supercomput. 2013;63(2):538–60.Article  Google Scholar 
  50. Li S, Xu LD, Wang X. A continuous biomedical signal acquisition system based on compressed sensing in body sensor networks. IEEE Trans Indus Inf. 2013;9(3):1764–71.MathSciNet Article  Google Scholar