Author(s):

  • Daniela Haluza
  • Isabella Böhm

Abstract:

Smartphones have become the most important commodity for today’s digitalized society. Besides direct interpersonal communication, their most used features are third-party applications (apps). Apps for monitoring health parameters (health apps) are extremely popular, and their users are part of the Quantified Self movement. Little knowledge is available on how health apps are perceived by a female target audience, the Quantified Woman. We conducted a study among Austrian females of reproductive age (n = 150) to analyze prevalence, perceived benefits, and readiness for health app use. In the cross-sectional online German survey, nearly all participants used these apps (98.0%), predominantly for monitoring physical activity and female health (both 31.3%). For the latter, participants used a large variety of different apps for monitoring contraception and menstruation. Perceived benefits and readiness of health app use were only of medium range. Our study assessed aspects of health app use in an understudied segment of the general population. From a Public Health perspective, the Quantified Woman could be empowered by health data collection by enabling her to take active control over how her health graphs develop. We suggest assuring data security and privacy for sensitive female health data collected by health apps.

Documentation:

https://doi.org/10.3390/reprodmed1020010

References:
  1. Brand, T. Connected Living: The Next Wave of Mobile Devices. GSM Assoc Minist. Programme 2012. Available online: http://www.gsma.com/connectedliving/wp-content/uploads/2012/05/ (accessed on 7 August 2020).
  2. Jennifer, L.P.; Kristin, S.V.; Dawn, M.F.; Julie, C.H.; Paul, Y.T.; Gregory, J.H. Health Care Providers Style May Impact Acceptance of Telemonitoring. Home Health Care Manag. Pract. 2012, 24, 276–282. [Google Scholar]
  3. Haluza, D.; Jungwirth, D. ICT and the future of healthcare: Aspects of pervasive health monitoring. Inform. Health Soc. Care 2016, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
  4. Muigg, D.; Kastner, P.; Modre-Osprian, R.; Haluza, D.; Duftschmid, G. Is Austria Ready for Telemonitoring? A Readiness Assessment among Doctors and Patients in the Field of Diabetes. Stud. Health Technol. Inform. 2018, 248, 322–329. [Google Scholar] [PubMed]
  5. Riedl, R.; Robausch, M.; Berghold, A. The Evaluation of the Effectiveness of Austrians Disease Management Program in Patients with Type 2 Diabetes Mellitus—A Population-Based Retrospective Cohort Study. PLoS ONE 2016, 11, e0161429. [Google Scholar] [CrossRef]
  6. Zwingerman, R.; Chaikof, M.; Jones, C. A Critical Appraisal of Fertility and Menstrual Tracking Apps for the iPhone. J. Obstet. Gynaecol. Can. 2019, 24, 30882–30885. [Google Scholar] [CrossRef]
  7. Pohl, M. 325,000 Mobile Health Apps Available in 2017—Android Now the Leading mHealth Platform. Available online: https://research2guidance.com/325000-mobile-health-apps-available-in-2017/ (accessed on 7 August 2020).
  8. Carroll, J.K.; Moorhead, A.; Bond, R.; LeBlanc, W.G.; Petrella, R.J.; Fiscella, K. Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach. J. Med. Internet Res. 2017, 19, e125. [Google Scholar] [CrossRef]
  9. West, J.H.; Hall, P.C.; Hanson, C.L.; Barnes, M.D.; Giraud-Carrier, C.; Barrett, J. There’s an app for that: Content analysis of paid health and fitness apps. J. Med. Internet Res. 2012, 14, e72. [Google Scholar] [CrossRef]
  10. Samoggia, A.; Riedel, B. Assessment of nutrition-focused mobile apps’ influence on consumers’ healthy food behaviour and nutrition knowledge. Food Res. Int. 2020, 128, 21. [Google Scholar] [CrossRef]
  11. Naszay, M.; Stockinger, A.; Jungwirth, D.; Haluza, D. Digital age and the Public eHealth perspective: Prevailing health app use among Austrian Internet users. Inform. Health Soc. Care 2017, 43, 390–400. [Google Scholar] [CrossRef]
  12. Krebs, P.; Duncan, D.T. Health App Use among US Mobile Phone Owners: A National Survey. JMIR Mhealth Uhealth 2015, 3, e101. [Google Scholar] [CrossRef]
  13. Hoy, M.B. Personal Activity Trackers and the Quantified Self. Med. Ref. Serv. Q. 2016, 35, 94–100. [Google Scholar] [CrossRef] [PubMed]
  14. Baker, D.A. Four Ironies of Self-quantification: Wearable Technologies and the Quantified Self. Sci. Eng. Ethics 2020, 22, 1–22. [Google Scholar] [CrossRef] [PubMed]
  15. Bhuyan, S.S.; Lu, N.; Chandak, A.; Kim, H.; Wyant, D.; Bhatt, J.; Kedia, S.; Chang, C.F. Use of Mobile Health Applications for Health-Seeking Behavior Among US Adults. J. Med. Syst. 2016, 40, 16–492. [Google Scholar] [CrossRef] [PubMed]
  16. Youm, S.; Park, S.H. Development and evaluation of a mobile application for personal lifestyle check-up and improvement. Telemed. J. E Health 2014, 20, 1057–1062. [Google Scholar] [CrossRef]
  17. Kao, C.K.; Liebovitz, D.M. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions. PM R 2017, 9, S106–S115. [Google Scholar] [CrossRef]
  18. Haluza, D.; Naszay, M.; Stockinger, A.; Jungwirth, D. Digital Natives versus Digital Immigrants: Influence of Online Health Information Seeking on the Doctor–Patient Relationship. Health Commun. 2017, 32, 1342–1349. [Google Scholar] [CrossRef]
  19. AlGhamdi, K.M.; Moussa, N.A. Internet use by the public to search for health-related information. Int. J. Med. Inf. 2012, 81, 363–373. [Google Scholar] [CrossRef]
  20. Baumann, E.; Czerwinski, F.; Reifegerste, D. Gender-Specific Determinants and Patterns of Online Health Information Seeking: Results from a Representative German Health Survey. J. Med. Int. Res. 2017, 19, e92. [Google Scholar] [CrossRef]
  21. Bhandari, N.; Shi, Y.; Jung, K. Seeking health information online: Does limited healthcare access matter? J. Am. Med. Inform. Assoc. 2014, 21, 1113–1117. [Google Scholar] [CrossRef]
  22. Andreassen, H.K.; Bujnowska-Fedak, M.M.; Chronaki, C.E.; Dumitru, R.C.; Pudule, I.; Santana, S.; Voss, H.; Wynn, R. European citizens’ use of E-health services: A study of seven countries. BMC Public Health 2007, 7, 53. [Google Scholar] [CrossRef]
  23. Kontos, E.; Blake, K.D.; Chou, W.Y.; Prestin, A. Predictors of eHealth usage: Insights on the digital divide from the Health Information National Trends Survey 2012. J. Med. Int. Res. 2014, 16, e172. [Google Scholar] [CrossRef] [PubMed]
  24. Escoffery, C. Gender Similarities and Differences for e-Health Behaviors among U.S. Adults. Telemed. J. E Health 2018, 24, 335–343. [Google Scholar] [CrossRef]
  25. Bol, N.; Helberger, N.; Weert, J.C.M. Differences in mobile health app use: A source of new digital inequalities? Inf. Soc. 2018, 34, 183–193. [Google Scholar] [CrossRef]
  26. Haluza, D.; Wernhart, A. Does gender matter? Exploring perceptions regarding health technologies among employees and students at a medical university. Int. J. Med. Inform. 2019, 130, 9. [Google Scholar] [CrossRef] [PubMed]
  27. Joiner, R.; Jeff Gavin, J.; Brosnan, M.; Cromby, J.; Gregory, H.; Guiller, J.; Maras, P.; Moon, A. Gender, Internet Experience, Internet Identification, and Internet Anxiety: A Ten-Year Followup. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 370–372. [Google Scholar] [CrossRef] [PubMed]
  28. Joo, S.; Chai, H.W.; Jun, H.J.; Almeida, D.M. Daily Stressors Facilitate Giving and Receiving of Emotional Support in Adulthood. Stress Health 2020, 20, 330–337. [Google Scholar] [CrossRef]
  29. Rattel, J.A.; Mauss, I.B.; Liedlgruber, M.; Wilhelm, F.H. Sex Differences in Emotional Concordance. Biol. Psychol. 2020, 17, 107845. [Google Scholar] [CrossRef]
  30. Liu, B.; Shi, S.; Wu, Y.; Thomas, D.; Symul, L.; Pierson, E.; Leskovec, J. Predicting pregnancy using large-scale data from a women’s health tracking mobile application. Proc. Int. World Wide Web Conf. 2019, 10, 3313512. [Google Scholar]
  31. Levy, J.; Romo-Aviles, N. “A good little tool to get to know yourself a bit better”: A qualitative study on users’ experiences of app-supported menstrual tracking in Europe. BMC Public Health 2019, 19, 1213. [Google Scholar] [CrossRef]
  32. Freis, A.; Freundl-Schütt, T.; Wallwiener, L.-M.; Baur, S.; Strowitzki, T.; Freundl, G.; Frank-Herrmann, P. Plausibility of Menstrual Cycle Apps Claiming to Support Conception. Front. Public Health 2018, 6, 98. [Google Scholar] [CrossRef]
  33. Lupton, D. Quantified sex: A critical analysis of sexual and reproductive self-tracking using apps. Cult. Health Sex. 2015, 17, 440–453. [Google Scholar] [CrossRef] [PubMed]
  34. WHO. Reproductive Health Indicators: Guidelines for Their Generation, Interpretation and Analysis for Global Monitoring. 2006. Available online: https://apps.who.int/iris/bitstream/handle/10665/43185/924156315X_eng.pdf (accessed on 7 August 2020).
  35. SoSci Survey. Available online: www.soscisurvey.de (accessed on 7 August 2020).
  36. Gagnon, M.P.; Desmartis, M.; Labrecque, M.; Car, J.; Pagliari, C.; Pluye, P.; Fremont, P.; Gagnon, J.; Tremblay, N.; Legare, F. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. J. Med. Syst. 2012, 36, 241–277. [Google Scholar] [CrossRef] [PubMed]
  37. Muigg, D.; Duftschmid, G.; Kastner, P.; Modre-Osprian, R.; Haluza, D. Telemonitoring readiness among Austrian diabetic patients: A cross-sectional validation study. Health Inform. J. 2020, 1–12. [Google Scholar] [CrossRef]
  38. Jennett, P.; Jackson, A.; Healy, T.; Ho, K.; Kazanjian, A.; Woollard, R.; Haydt, S.; Bates, J. A study of a rural community’s readiness for telehealth. J. Telemed. Telecare 2003, 9, 259–263. [Google Scholar] [CrossRef] [PubMed]
  39. Agency for Clinical Innovation. Guidelines for the Use of Telehealth for Clinical and Non Clinical Settings in NSW. 2015. Available online: https://www.telemedecine-360.com/wp-content/uploads/2019/02/2015-ACI-telehealth-guidelines.pdf (accessed on 7 August 2020).
  40. Zalma, A.R.; Safiah, M.Y.; Ajau, D.; Khairil Anuar, M.I. Reliability and validity of television food advertising questionnaire in Malaysia. Health Promot. Int. 2013, 30, 523–530. [Google Scholar] [CrossRef]
  41. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; Volume 6. [Google Scholar]
  42. Clue Period & Ovulation Tracker. Available online: https://helloclue.com/ (accessed on 7 August 2020).
  43. Strawberry Week. Available online: https://erdbeerwoche.com/ (accessed on 7 August 2020).
  44. MyPill. Available online: https://mypill.app (accessed on 7 August 2020).
  45. Period Tracker. Available online: https://apps.apple.com/us/app/period-tracker-by-gp-apps/id330376830 (accessed on 7 August 2020).
  46. Lady Cycle. Available online: https://www.ladycycle.com/de/ (accessed on 7 August 2020).
  47. Ajana, B. Digital health and the biopolitics of the Quantified Self. Digit. Health 2017, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
  48. Massaro, A.; Galiano, A.; Scarafile, D.; Vacca, A.; Frassanito, A.; Melaccio, A.; Solimando, A.; Ria, R.; Calamita, G.; Bonomo, M.; et al. Telemedicine DSS-AI Multi Level Platform for Monoclonal Gammopathy Assistance. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–5. [Google Scholar]
  49. Van Velsen, L.; Beaujean, D.J.; van Gemert-Pijnen, J.E. Why mobile health app overload drives us crazy, and how to restore the sanity. BMC Med. Inform. Decis. Mak. 2013, 13, 23. [Google Scholar] [CrossRef]
  50. Haluza, D.; Böhm, I. Mobile and online health information: Exploring digital media use among Austrian parents. Int. J. Environ. Res. Public Health 2020, 17, 6053. [Google Scholar] [CrossRef]
  51. Statistik Austria. Demographic Indicators. 2019. Available online: https://www.statistik.at/web_en/statistics/PeopleSociety/population/demographic_indicators/index.html (accessed on 7 August 2020).
  52. Hofer, F.; Haluza, D. Are Austrian practitioners ready to use medical apps? Results of a validation study. BMC Med. Inform. Decis. Mak. 2019, 19, 88. [Google Scholar] [CrossRef]
  53. Muigg, D.; Kastner, P.; Duftschmid, G.; Modre-Osprian, R.; Haluza, D. Readiness to use telemonitoring in diabetes care: A cross-sectional study among Austrian practitioners. BMC Med. Inform. Decis. Mak. 2019, 19, 26. [Google Scholar] [CrossRef]