Author(s):
Abstract:
In the frame of an experiment dealing with quantified self and reflexivity, we collected audio-video data that provide us with material to discuss the ways in which the participants would work out social synergy through co-presence management and epistemic balance – accounting for their orientation towards the familiar symbiotic nature of human interactions. Following a Conversational Analysis perspective, we believe that detailed analysis of interactional behaviors offers opportunities for socially interactive robots design improvements, that is: identify and reproduce human ordinary skills in order to make the machines more adaptable.
Documentation:
https://doi.org/10.1007/978-3-319-57753-1_13
References:
- Aura. https://www.withings.com/eu/en/products/aura
- 2.Bergmann, J.: Veiled morality: notes on discretion in psychiatry. In: Drew, P., Heritage, J. (eds.) Talk at Work, pp. 137–162. CUP, Cambridge (1992)Google Scholar
- 3.Boucsein, W.: Electrodermal Activity. Plenum, New York (1992)CrossRefGoogle Scholar
- 4.Cahour, B., Licoppe, C.: La confrontation aux traces de son activité. Revue d’Anthropologie des Connaissances 4(2), 243–253 (2010)CrossRefGoogle Scholar
- 5.Cassell, J., Bickmore, T., Campbell, L., Vilhjálmsson, H., Yan, H.: Human conversation as a system framework: designing embodied conversational agents. In: Cassell, J., Sullivan, J., Prevost, S., Churchill, E. (eds.) Embodied Conversational Agents, pp. 29–63. MIT Press, Cambridge (2000)Google Scholar
- 6.Consolvo, S., Everitt, K., Smith, I., Landay, J.A.: Design requirements for technologies that encourage physical activity. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2006), pp. 457–466. ACM, New York (2006)Google Scholar
- 7.Critchley, H.D.: Electrodermal responses: what happens in the brain. Neuroscientist 8, 132–142 (2002)CrossRefGoogle Scholar
- 8.Delaborde, A., Tahon, M., Barras, C., Devillers, L.: A wizard-of-Oz game for collecting emotional audio data in a children-robot interaction. In: Proceedings of the International Workshop on Affective-Aware Virtual Agents and Social Robots (Affine 2009), New York (2009)Google Scholar
- 9.Demeure, V., Niewiadomski, R., Pélachaud, C.: How is believability of a virtual agent related to warmth, competence, personification, and embodiment? Presence Teleoperators Virtual Environ. 20(5), 431–448 (2011)CrossRefGoogle Scholar
- 10.Dubuisson–Duplessis, G., Devillers L.: Towards the consideration of dialogue activities in engagement measures for human-robot social interaction. In: IROS2015 International Conference on Intelligent Robots and Systems, Designing and Evaluating Social Robots for Public Settings Workshop, pp. 19–24, Hambourg, Germany (2015)Google Scholar
- 11.Empatica. https://support.empatica.com/
- 12.Fitbit. https://www.fitbit.com/
- 13.Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3–4), 143–166 (2003)CrossRefzbMATHGoogle Scholar
- 14.Foster, M.E.: Natural face-to-face conversation with socially intelligent robots. In: Proceedings of the IROS 2015, Hamburg, Germany (2015)Google Scholar
- 15.Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.A.: Investigating a mobile tool for tracking and supporting green transportation habits. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2009), pp. 1043–1052. ACM, New York (2009)Google Scholar
- 16.Garbarino, M., Lai, M., Bender, D., Picard, R., Tognetti, S.: Empatica E3: a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In: EAI 4th International Conference on Wireless Mobile Communication and Healthcare, pp. 39–42. IEEE press, Athens (2014)Google Scholar
- 17.Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall, Engelwood Cliffs (1967)Google Scholar
- 18.Goffman, E.: Interaction Ritual: Essays on Face-to-Face Behaviour. Penguin books, London (1967)Google Scholar
- 19.Goffman, E.: Behavior in Public Places: Notes on the Social Organization of Gatherings. The Free Press, New York (1963)Google Scholar
- 20.Goodwin, M.H.: Byplay: participant structure and framing of collaborative collusion. In: Framing Discourse: Public and Private in Language and Society. Meeting of the American Anthropological Association, Washington (1985)Google Scholar
- 21.Goodwin, C.: Interactive footing. In: Holt, E., Clift, R. (eds.) Reporting Talk: Reported Speech and Footing in Conversation, pp. 16–46. CUP, Cambridge (2007)Google Scholar
- 22.Goodwin, C.: The semiotic body in its environment. In: Coupland, J., Gwyn, R. (eds.) Discourses of the Body, pp. 19–42. Palgrave Macmillan, New York (2003)CrossRefGoogle Scholar
- 23.Goodwin, C.: Transparent vision. In: Ochs, E., Schegloff, E.A., Thompson, S. (eds.) Interaction and Grammar, pp. 370–404. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
- 24.Heritage, J.: The epistemic engine: sequence organization and territories of knowledge. Res. Lang. Soc. Interact. 45(1), 30–52 (2012)CrossRefGoogle Scholar
- 25.Heritage, J.: Territories of knowledge, territories of experience: empathic moments in interaction. In: Stivers, T., Mondada, L., Steensig, J. (eds.) The Morality of Knowledge in Conversation, pp. 159–183. CUP, Cambridge (2011)CrossRefGoogle Scholar
- 26.Heritage, J., Raymond, G.: The terms of agreement: indexing epistemic authority and subordination in assessment sequences. Soc. Psychol. Q. 68(1), 15–38 (2005)CrossRefGoogle Scholar
- 27.Hernandez, J., McDuff, D., Benavides, X., Amores, J., Maes, P., Picard, R.W.: AutoEmotive: bringing empathy to the driving experience to manage stress. In: Proceedings of the Companion Publication on Designing Interactive Systems (DIS 2014), Vancouver, Canada (2014)Google Scholar
- 28.Janssoone, T., Clavel, C., Bailly, K., Richard, G.: Using temporal association rules for the synthesis of embodied conversational agents with a specific stance. In: Traum, D., Swartout, W., Khooshabeh, P., Kopp, S., Scherer, S., Leuski, A. (eds.) IVA 2016. LNCS (LNAI), vol. 10011, pp. 175–189. Springer, Cham (2016). doi: 10.1007/978-3-319-47665-0_16 CrossRefGoogle Scholar
- 29.Kerbrat-Orecchioni, C.: Théorie des faces et analyse conversationnelle. In: Colloque de Cerisy, pp. 155–195. Les Editions de Minuit, Paris (1989)Google Scholar
- 30.Labov, W., Fanshel, D.: Therapeutic Discourse. New York Academic Press, New York (1977)Google Scholar
- 31.Li, I., Dey, A., Forlizzi, J.: Understanding my data, myself: supporting self-reflection with ubicomp technologies. In: Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp 2011), pp. 405–414. ACM, New York (2011)Google Scholar
- 32.Maynard, W.: Bad News, Good News. Conversational Order in Every-Day Talk and Clinical Settings. University of Chicago Press, Chicago & London (2003)Google Scholar
- 33.McNeill, D.: Gesture and Thought. University of Chicago Press, Chicago (2005)CrossRefGoogle Scholar
- 34.Morin, E.: La Méthode. Tome 1. La Nature de la Nature. Editions du Seuil, Paris (1977)Google Scholar
- 35.Ochs, E., Schegloff, E.A., Thompson, S. (eds.): Interaction and Grammar. CUP, Cambridge (1996)Google Scholar
- 36.Pélachaud, C., Glas, N.: Definitions of engagement in human-agent interaction. In: International Workshop on Engagement in Human Computer Interaction (ENHANCE), The Sixth International Conference on Affective Computing and Intelligent Interaction, pp. 944–949, Xi’an, China (2015)Google Scholar
- 37.Pélachaud, C., Glas, N.: Topic transition strategies for an information-giving agent. In: Proceedings of the 15th European Workshop on natural Language Generation, pp. 146–155, Brighton (2015)Google Scholar
- 38.Pieper, J.R., Laugero, K.D.: Preschool children with lower executive function may be more vulnerable to emotional-based eating in the absence of hunger. Appetite 62(1), 103–109 (2013)CrossRefGoogle Scholar
- 39.Pierce, J., Paulos, E.: Beyond energy monitors: interaction, energy, and emerging energy systems. In: CHI 2012 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 665–674. ACM, Austin (2012)Google Scholar
- 40.Pitsch, K., Wrede, S.: When a robot orients visitors to an exhibit. Referential practices and interactional dynamics in the real world. In: IEEE ROMAN 23rd International Symposium on Robot and Human Interactive Communication, pp. 36–42. IEEE press, Edinburgh (2014)Google Scholar
- 41.Pitsch, K., Kuzuoka, H., Suzuki, Y., Süssenbach, L., Luff, P., Heath, C.: The first five seconds: contingent stepwise entry into an interaction as a means to secure sustained engagement in human-robot-interaction. In: IEEE ROMAN 18th International Symposium on Robot and Human Interactive Communication, pp. 985–991, Toyama, Japan (2009)Google Scholar
- 42.Pomerantz, A.: Agreeing and disagreeing with assessments: some features of preferred dispreferred turn shapes. In: Atkinson, J.M., Heritage, J. (eds.) Structures of Social Action, pp. 57–101. CUP, Cambridge (1984)Google Scholar
- 43.Rollet, N.: Analyse conversationnelle des pratiques dans les appels au Samu-Centre 15: vers une approche praxéologique d’une forme située «d’accord». Ph.D. Sciences du Langage, Sorbonne Nouvelle Paris 3, Paris (2012)Google Scholar
- 44.Sacks, H.: On the preferences for agreement and contiguity in sequences in vonversation. In: Button, G., Lee, J.R., (eds.) Talk and Social Organisation, Multilingual Matters, Clevedon, UK (1987)Google Scholar
- 45.Sacks, H., Schegloff, E.A., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 50, 696–731 (1974)CrossRefGoogle Scholar
- 46.Smith, B.K., Frost, J., Albayrak, M., Sudhakar, R.: Integrating glucometers and digital photography as experience capture tools to enhance patient understanding and communication of diabetes self-management practices. Pers. Ubiquit. Comput. 11(4), 273–286 (2007)CrossRefGoogle Scholar
- 47.Stivers, T., Rossano, F.: Mobilizing response. Res. Lang. Soc. Interact. 43(1), 3–31 (2010)CrossRefGoogle Scholar
- 48.Swan, M.: Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0. J. Sensor Actuator Netw. 1, 217–253 (2012)CrossRefGoogle Scholar
- 49.Tahon, M., Delaborde, A., Devillers, L.: Corpus of children voices for mid-level social markers and affect bursts analysis. In: LREC 8th International Conference on Language Resources and Evaluation, Istanbul, Turkey (2012)Google Scholar
- 50.T2 mood tracker. https://play.google.com/store/apps/details?id=com.t2.vas&hl=en
- 51.Voutilainen, L., Preäkylä, A., Ruusuvuori, J.: Recognition and interpretation: responding to emotional experience in psychotherapy. Res. Lang. Soc. Interact. 43(1), 85–107 (2010)CrossRefGoogle Scholar