Author(s):

  • Eun Kyoung Choe ,
  • Bongshin Lee ,
  • Haining Zhu ,
  • Nathalie Henry Riche ,
  • Dominikus Baur

Abstract:

Rapid advancements in consumer technologies enable people to collect a wide range of personal data. With a proper means for people to ask questions and explore their data, longitudinal data feeds from multiple self-tracking tools pose great opportunities to foster deep self-reflection. However, most self-tracking tools lack support for self-reflection beyond providing simple feedback. Our overarching goal is to support self-trackers in reflecting on their data and gaining rich insights through visual data exploration. As a first step toward the goal, we built a web-based application called Visualized Self, and conducted an in-lab think-aloud study (N = 11) to examine how people reflect on their personal data and what types of insights they gain throughout the reflection. We discuss lessons learned from studying with Visualized Self, and suggest directions for designing visual data exploration tools for fostering self-reflection.

Documentation:

https://doi.org/10.1145/3154862.3154881

References:
  1. Apple HealthKit. https://developer.apple.com/healthkit.Apple ResearchKit & CareKit. http://www.apple.com/researchkit.
  2. Baumer, E. P. (2015). Reflective informatics: conceptual dimensions for designing technologies of reflection. Proc. CHI ’15, 585–594.
  3. Baumer, E. P., Khovanskaya, V., Matthews, M., Reynolds, L., Schwanda Sosik, V., & Gay, G. (2014). Reviewing reflection: on the use of reflection in interactive system design. Proc. DIS ’14, 93–102.
  4. Bell, G. (2001). A Personal Digital Store, Communications of the ACM, 44(1), 86–91.
  5. Bentley, F., Tollmar, K., Stephenson, P., Levy, L., Jones, B., Robertson, S., … & Wilson, J. (2013). Health Mashups: Presenting statistical patterns between well-being data and context in natural language to promote behavior change. ACM TOCHI, 20(5), 30.
  6. Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in information visualization: using vision to think. Morgan Kaufmann.
  7. Choe, E. K., Lee, B., & schraefel, m. c. (2015). Characterizing visualization insights from quantified-selfers’ personal data presentations. IEEE CG&A, 35(4), 28–37.
  8. Choe, E. K., Lee, N. B., Lee, B., Pratt, W., & Kientz, J. A. (2014). Understanding quantified selfers’ practices in collecting and exploring personal data. Proc. CHI ’14, 1143–1152.
  9. Consolvo, S., Klasnja, P., McDonald, D. W., Avrahami, D., Froehlich, J., LeGrand, L., … & Landay, J. A. (2008). Flowers or a robot army?: encouraging awareness & activity with personal, mobile displays. Proc. UbiComp ’08, 54–63.
  10. Epstein, D., Cordeiro, F., Bales, E., Fogarty, J., & Munson, S. (2014). Taming data complexity in life-logs: exploring visual cuts of personal informatics data. Proc. DIS ’14, 667–676.
  11. Epstein, D. A., Ping, A., Fogarty, J., & Munson, S. A. (2015). A lived informatics model of personal informatics. Proc. UbiComp ’15, 731–742. Exist. https://exist.io.
  12. Fan, C., Forlizzi, J., & Dey, A. K. (2012). A spark of activity: exploring informative art as visualization for physical activity. Proc. UbiComp ’12, 81–84.
  13. Fawcett, T. (2015). Mining the quantified self: personal knowledge discovery as a challenge for data science. Big Data, 3(4), 249–266.
  14. Fleck, R. (2012). Rating reflection on experience: A case study of teachers’ and tutors’ reflection around images. Interacting with computers, 24(6), 439–449. Fluxtream. https://fluxtream.org.
  15. Froehlich, J., Findlater, L., Ostergren, M., Ramanathan, S., Peterson, J., Wragg, I., … & Landay, J. A. (2012). The design and evaluation of prototype eco-feedback displays for fixture-level water usage data. Proc. CHI ’12, 2367–2376.
  16. Gemmell, J., Bell, G., & Lueder, R. (2006). MyLife-Bits: a personal database for everything. CACM, 49(1), 88–95. Google Fit. https://www.google.com/fit.Grammel, L., Tory, M., & Storey, M. (2010). How information visualization novices construct visualizations. IEEE TVCG (InfoVis ’10), 16(6), 943–952.
  17. Hsieh, C. K., Tangmunarunkit, H., Alquaddoomi, F., Jenkins, J., Kang, J., Ketcham, C., … & Estrin, D. (2013). Lifestreams: A modular sense-making toolset for identifying important patterns from everyday life. Proc. SenSys ’13.
  18. Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative health research, 15(9), 1277–1288.
  19. Huang, D., Tory, M., Aseniero, B. A., Bartram, L., Bateman, S., Carpendale, S., Tang, A., & Woodbury, R. (2015). Personal visualization and personal visual analytics. IEEE TVCG, 21(3), 420–433.
  20. Jones, S. L., & Kelly, R. (2016). Finding interesting correlations in multi-faceted personal informatics systems. Ext. Abstracts CHI ’16, 3099–3106.
  21. Kim, Y. H., Jeon, J. H., Choe, E. K., Lee, B., Kim, K., & Seo, J. (2016). TimeAware: leveraging framing effects to enhance personal productivity. Proc. CHI ’16, 272–283.
  22. Lazar, A., Koehler, C., Tanenbaum, J., & Nguyen, D. H. (2015). Why we use and abandon smart devices. Proc. UbiComp ’15, 635–646. Li, I., Dey, A., & Forlizzi, J. (2010). A stage-based model of personal informatics systems. Proc. CHI ’10, 557–566.
  23. Li, I., Dey, A. K., & Forlizzi, J. (2011). Understanding my data, myself: supporting self-reflection with ubicomp technologies. Proc. UbiComp ’11, 405–414.
  24. Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish’n’Steps: encouraging physical activity with an interactive computer game. Proc. UbiComp ’06, 261–278. Microsoft HealthVault. https://www.healthvault.com/us/en.
  25. Ploderer, B., Reitberger, W., Oinas-Kukkonen, H., & van Gemert-Pijnen, J. (2014). Social interaction and reflection for behaviour change. Personal and Ubiquitous Computing, 18(7), 1667–1676. Quantified Self. http://www.quantifiedself.com.
  26. Ren, D., Brehmer, M., Lee, B., Höllere, T., & Choe, E.K. (2017). ChartAccent: Annotation for Data-Driven Storytelling. PacificVis ’17.RescueTime. https://www.rescuetime.com.
  27. Rooksby, J., Rost, M., Morrison, A., & Chalmers, M. C. (2014). Personal tracking as lived informatics. Proc. CHI ’14, 1163–1172.
  28. Sharmin, M., Raij, A., Epstien, D., Nahum-Shani, I., Beck, J. G., Vhaduri, S., … & Kumar, S. (2015). Visualization of time-series sensor data to inform the design of just-in-time adaptive stress interventions. Proc. UbiComp ’15, 505–516.
  29. Thieme, A., Comber, R., Miebach, J., Weeden, J., Kraemer, N., Lawson, S., & Olivier, P. (2012). We’ve bin watching you: designing for reflection and social persuasion to promote sustainable lifestyles. Proc. CHI ’12, 2337–2346.
  30. Thudt, A., Lee, B., Choe, E.K., & Carpendale, S. (2017). Expanding research methods for a realistic understanding of personal visualization. IEEE CG&A, 37(2), 12–18. Zenobase. https://zenobase.com.