Author(s):
Abstract:
Increasing numbers of older individuals in the societies pose great challenges for countries affected by the demographic change. The rapid development in the technological sector, on the other hand, enables various applications to make everyday life easier for older and disabled people and to maintain their autonomy for longer. This study examines the acceptance and privacy perceptions of a video-based technology for lifelogging in home environments among German and Turkish users, using a multi-method empirical research approach. Results expose an overall differing acceptance of using lifelogging cameras between German and Turkish participants and suggest that the consideration of the varying culture-bound demands is necessary. The findings of this study support the understanding of requirements for a successful implementation of a video-based assistive technology in private environments to optimally address the needs of the future users, drawing attention to the important cultural influences that affect its acceptance.
Documentation:
https://doi.org/10.1080/10447318.2021.1888487
References:
- Alagöz, F., Ziefle, M., Wilkowska, W., & Calero Valdez, A. (2011). Openness to accept medical technology – A cultural view. In A. Holzinger & K. M. Simonic (Eds.), Lecture notes in computer science: Vol. 7058. Information quality in e-Health (pp. 151–170). Springer. https://doi.org/10.1007/978-3-642-25364-5_14 [Google Scholar]
- Alagöz, F., Valdez, A. C., Wilkowska, W., Ziefle, M., Dorner, S., & Holzinger, A. (2010). From cloud computing to mobile Internet, from user focus to culture and hedonism: The crucible of mobile health care and wellness applications. 5th International Conference on Pervasive Computing and Applications (pp. 38–45). IEEE. https://doi.org/10.1109/ICPCA.2010.5704072 [Crossref], [Google Scholar]
- Biermann, H., Himmel, S., Offermann-van Heek, J., & Ziefle, M. (2018). User-specific concepts of aging – A qualitative approach on AAL-acceptance regarding ultrasonic whistles. In J. Zhou & G. Salvendy (Eds.), Lecture notes in computer science: Vol. 10927. Human aspects of IT for the aged population. Applications in health, assistance, and entertainment (pp. 231–249). Springer. https://doi.org/10.1007/978-3-319-92037-5_18 [Google Scholar]
- Blackman, S., Matlo, C., Bobrovitskiy, C., Waldoch, A., Fang, M. L., Jackson, P., Mihailidis, A., Nygård, L., Astell, A., & Sixsmith, A. (2016). Ambient assisted living technologies for aging well: A scoping review. Journal of Intelligent Systems, 25(1), 55–69. https://doi.org/10.1515/jisys-2014-0136 [Crossref], [Web of Science ®], [Google Scholar]
- Boz, N., Uhls, Y. T., & Greenfield, P. M. (2016). Cross-cultural comparison of adolescents’ online self-presentation strategies: Turkey and the United States. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 6(3), 1–16. https://doi.org/10.4018/IJCBPL.2016070101 [Crossref], [Google Scholar]
- Calvaresi, D., Cesarini, D., Sernani, P., Marinoni, M., Dragoni, A. F., & Sturm, A. (2017). Exploring the ambient assisted living domain: A systematic review. Journal of Ambient Intelligence and Humanized Computing, 8(2), 239–257. https://doi.org/10.1007/s12652-016-0374-3 [Crossref], [Web of Science ®], [Google Scholar]
- Chen, L., Yang, H., & Liu, P. (2019, August). Intelligent robot arm: Vision-based dynamic measurement system for industrial applications. In H. Yu, J. Liu, L. Liu, Z. Ju, Y. Liu, & D. Zhou (Eds.), Lecture notes in computer science: Vol. 11744. Intelligent robotics and applications (pp. 120–130). Springer. https://doi.org/10.1007/978-3-030-27541-9_11 [Crossref], [Google Scholar]
- Ćirić, I. T., Ćojbašić, Ž. M., Ristić-Durrant, D. D., Nikolić, V. D., Ćirić, M. V., Simonović, M. B., & Pavlović, I. R. (2016). Thermal vision based intelligent system for human detection and tracking in mobile robot control system. Thermal Science, 20(5), 1553–1559. https://doi.org/10.2298/TSCI16S5553C [Crossref], [Google Scholar]
- Climent-Pérez, P., Spinsante, S., Mihailidis, A., & Flórez-Revuelta, F. (2020). A review on video-based active and assisted living technologies for automated lifelogging. Expert Systems with Applications, 139, 112847. https://doi.org/10.1016/j.eswa.2019.112847 [Crossref], [Web of Science ®], [Google Scholar]
- Crivello, A., Mavilia, F., Barsocchi, P., Ferro, E., & Palumbo, F. (2018). Detecting occupancy and social interaction via energy and environmental monitoring. IJSNet, 27(1), 61–69. https://doi.org/10.1504/IJSNET.2018.092136 [Crossref], [Google Scholar]
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008 [Crossref], [Web of Science ®], [Google Scholar]
- Demiris, G., Hensel, B. K., Skubic, M., & Rantz, M. (2008). Senior residents’ perceived need of and preferences for “smart home” sensor technologies. International Journal of Technology Assessment in Health Care, 24(1), 120–124. https://doi.org/10.1017/S0266462307080154 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Gövercin, M., Meyer, S., Schellenbach, M., Steinhagen-Thiessen, E., Weiss, B., & Haesner, M. (2016). SmartSenior@home: Acceptance of an integrated ambient assisted living system. Results of a clinical field trial in 35 households. Informatics for Health & Social Care, 41(4), 430–447. https://doi.org/10.3109/17538157.2015.1064425 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Gurrin, C., Albatal, R., Joho, H., & Ishii, K. (2014a). A privacy by design approach to lifelogging. In K. O’Hara, C. Nguyen, & P. Haynes (Eds.), Digital enlightenment yearbook 2014 (pp. 49–73). IOS Press. [Google Scholar]
- Gurrin, C., Smeaton, A. F., & Doherty, A. R. (2014b). Lifelogging: Personal big data. Foundations and Trends® in Information Retrieval, 8(1), 1–125. https://doi.org/10.1561/1500000033 [Crossref], [Web of Science ®], [Google Scholar]
- Himmel, S., & Ziefle, M. (2016). Smart home medical technologies: Users’ requirements for conditional acceptance. i-com, 15(1), 39–50. https://doi.org/10.1515/icom-2016-0007 [Crossref], [Google Scholar]
- Hofstede, G. (1980). Cultural consequences: International differences in work related values. Sage. [Google Scholar]
- Hofstede, G. (1993). Cultural constraints in management theories. The Academy of Management Executive, 7(1), 81–94. https://doi.org/10.5465/ame.1993.9409142061 [Crossref], [Google Scholar]
- Hofstede, G. (2001). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations (2nd ed.). Sage Publications. [Google Scholar]
- Jalal, A., Kamal, S., & Kim, D. (2014). A depth video sensor-based lifelogging human activity recognition system for elderly care in smart indoor environments. Sensors, 14(7), 11735–11759. https://doi.org/10.3390/s140711735 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Jaschinski, C., & Allouch, S. B. (2015). An extended view on benefits and barriers of ambient assisted living solutions. International Journal on Advances in Life Sciences, 7(1–2), 40–53. https://www.iariajournals.org/life_sciences/lifsci_v7_n12_2015_paged.pdf#page=46 [Google Scholar]
- Kowalewski, S., Wilkowska, W., & Ziefle, M. (2010). Accounting for user diversity in the acceptance of medical assistive technologies. In M. Szomszor & P. Kostkova (Eds.), Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering: Vol. 69. Electronic healthcare (pp. 175–183). Springer. https://doi.org/10.1007/978-3-642-23635-8_22 [Google Scholar]
- Lee, S. G., Trimi, S., & Kim, C. (2013). The impact of cultural differences on technology adoption. Journal of World Business, 48(1), 20–29. https://doi.org/10.1016/j.jwb.2012.06.003 [Crossref], [Web of Science ®], [Google Scholar]
- Li, Y., Wang, X., Lin, X., & Hajli, M. (2018). Seeking and sharing health information on social media: A net valence model and cross-cultural comparison. Technological Forecasting and Social Change, 126, 28–40. https://doi.org/10.1016/j.techfore.2016.07.021 [Crossref], [Web of Science ®], [Google Scholar]
- Lidynia, C., Schomakers, E. M., & Ziefle, M. (2018). What are you waiting for? – Perceived barriers to the adoption of fitness-applications and wearables. In T. Ahram (Ed.), Advances in intelligent systems and computing: Vol. 795. Advances in human factors in wearable technologies and game design (pp. 41–52). Springer. https://doi.org/10.1007/978-3-319-94619-1_5 [Google Scholar]
- Lorenzen-Huber, L., Boutain, M., Camp, L. J., Shankar, K., & Connelly, K. H. (2011). Privacy, technology, and aging: A proposed framework. Ageing International, 36(2), 232–252. https://doi.org/10.1007/s12126-010-9083-y [Crossref], [Google Scholar]
- Mayer, B., Trommsdorff, G., Kagitcibasi, C., & Mishra, R. C. (2012). Family models of independence/interdependence and their intergenerational similarity in Germany, Turkey, and India. Family Science, 3(1), 64–74. https://doi.org/10.1080/19424620.2011.671503 [Taylor & Francis Online], [Google Scholar]
- Meditskos, G., Plans, P. M., Stavropoulos, T. G., Benois-Pineau, J., Buso, V., & Kompatsiaris, I. (2018). Multi-modal activity recognition from egocentric vision, semantic enrichment and lifelogging applications for the care of dementia. Journal of Visual Communication and Image Representation, 51, 169–190. https://doi.org/10.1016/j.jvcir.2018.01.009 [Crossref], [Web of Science ®], [Google Scholar]
- Mercuri, M., Karsmakers, P., Vanrumste, B., Leroux, P., & Schreurs, D. (2016, January). Biomedical wireless radar sensor network for indoor emergency situations detection and vital signs monitoring. 2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS) (pp. 32–35). IEEE. https://doi.org/10.1109/BIOWIRELESS.2016.7445554 [Crossref], [Google Scholar]
- Offermann-van Heek, J., Schomakers, E. M., & Ziefle, M. (2019). Bare necessities? How the need for care modulates the acceptance of ambient assisted living technologies. International Journal of Medical Informatics, 127, 147–156. https://doi.org/10.1016/j.ijmedinf.2019.04.025 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Offermann-van Heek, J., Wilkowska, W., & Ziefle, M. (2020). Cultural impact on perceptions of aging, care, and lifelogging technology: A comparison between Turkey and Germany. International Journal of Human–Computer Interaction, 37(2), 156–168. https://doi.org/10.1080/10447318.2020.1809247 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Padilla-López, J., Chaaraoui, A., Gu, F., & Flórez-Revuelta, F. (2015). Visual privacy by context: Proposal and evaluation of a level-based visualisation scheme. Sensors, 15(6), 12959–12982. https://doi.org/10.3390/s150612959 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Peek, S. T. M., Wouters, E. J. M., Van Hoof, J., Luijkx, K. G., Boeije, H. R., & Vrijhoef, H. J. M. (2014). Factors influencing acceptance of technology for aging in place: A systematic review. International Journal of Medical Informatics, 83(4), 235–248. https://doi.org/10.1016/j.ijmedinf.2014.01.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Pollack, M. E., Brown, L., Colbry, D., McCarthy, C. E., Orosz, C., Peintner, B., Tsamardinos, I., & Ramakrishnan, S. (2003). Autominder: An intelligent cognitive orthotic system for people with memory impairment. Robotics and Autonomous Systems, 44(3–4), 273–282. https://doi.org/10.1016/S0921-8890(03)00077-0 [Crossref], [Web of Science ®], [Google Scholar]
- Postawka, A., & Rudy, J. (2018). Lifelogging system based on averaged Hidden Markov Models: Dangerous activities recognition for caregiver support. Computer Science, 19(3), 257–278. https://doi.org/10.7494/csci.2018.19.3.2855 [Crossref], [Google Scholar]
- Psychoula, I., Chen, L., & Chen, F. (2017). Privacy modelling and management for assisted living within smart homes. 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 1–6). IEEE. https://doi.org/10.1109/HealthCom.2017.8210782 [Crossref], [Google Scholar]
- Rashidi, P., & Mihailidis, A. (2013). A survey on ambient-assisted living tools for older adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579–590. https://doi.org/10.1109/JBHI.2012.2234129 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Rumpf, C. (2017). Das ‚neue‘ politische System der Türkei [The ‚new‘ political system of Turkey]. Federal Agency for Civic Education. https://www.bpb.de/internationales/europa/tuerkei/253181/das-neue-politische-system-der-tuerkei [Google Scholar]
- Sackmann, R., & Winkler, O. (2013). Technology generations revisited: The internet generation. Gerontechnology, 11(4), 493–503. https://doi.org/10.4017/gt.2013.11.4.002.00 [Crossref], [Google Scholar]
- Schoeppe, S., Alley, S., Van Lippevelde, W., Bray, N. A., Williams, S. L., Duncan, M. J., & Vandelanotte, C. (2016). Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: A systematic review. International Journal of Behavioral Nutrition and Physical Activity, 13(1), 127. https://doi.org/10.1186/s12966-016-0454-y [Crossref], [PubMed], [Google Scholar]
- Sefat, M. S., Khan, A. A. M., & Shahjahan, M. (2014, May). Implementation of vision based intelligent home automation and security system. In 2014 International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 1–6). IEEE. https://doi.org/10.1109/ICIEV.2014.6850818 [Crossref], [Google Scholar]
- Selke, S. (2016). Lifelogging: Digital self-tracking and Lifelogging – Between disruptive technology and cultural transformation. Springer. https://doi.org/10.1007/978-3-658-13137-1 [Crossref], [Google Scholar]
- Siek, K. A., Khan, D. U., Ross, S. E., Haverhals, L. M., Meyers, J., & Cali, S. R. (2011). Designing a personal health application for older adults to manage medications: A comprehensive case study. Journal of Medical Systems, 35(5), 1099–1121. https://doi.org/10.1007/s10916-011-9719-9 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Steele, R., Lo, A., Secombe, C., & Wong, Y. K. (2009). Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. International Journal of Medical Informatics, 78(12), 788–801. https://doi.org/10.1016/j.ijmedinf.2009.08.001 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Sun, H., De Florio, V., Gui, N., & Blondia, C. (2010). The missing ones: Key ingredients towards effective ambient assisted living systems. Journal of Ambient Intelligence and Smart Environments, 2(2), 109–120. https://doi.org/10.3233/AIS-2010-0062 [Crossref], [Web of Science ®], [Google Scholar]
- Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53–78. https://doi.org/10.1016/j.ijhcs.2005.04.013 [Crossref], [Web of Science ®], [Google Scholar]
- Taras, V., Steel, P., & Kirkman, B. L. (2012). Improving national cultural indices using a longitudinal meta-analysis of Hofstede’s dimensions. Journal of World Business, 47(3), 329–341. https://doi.org/10.1016/j.jwb.2011.05.001 [Crossref], [Web of Science ®], [Google Scholar]
- van Heek, J., Arning, K., & Ziefle, M. (2016). The surveillance society: Which factors form public acceptance of surveillance technologies? In M. Helfert, C. Klein, B. Donnellan, & O. Gusikhin (Eds.), Communications in computer and information science: Vol. 738. Smart cities, green technologies, and intelligent transport systems (pp. 170–191). Springer. https://doi.org/10.1007/978-3-319-63712-9_10 [Google Scholar]
- Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540 [Crossref], [Web of Science ®], [Google Scholar]
- Wang, L., Gu, T., Tao, X., & Lu, J. (2009). Sensor-based human activity recognition in a multi-user scenario. In M. Tscheligi et al. (Ed.), AmI 2009. lecture notes in computer science (Vol. 5859, pp. 78–87). Springer. https://doi.org/10.1007/978-3-642-05408-2_10 [Crossref], [Google Scholar]
- Wilkowska, W., Ziefle, M., & Himmel, S. (2015). Perceptions of personal privacy in smart home technologies: Do user assessments vary depending on the research method? In T. Tryfonas & I. Askoxylakis (Eds.), Lecture notes in computer science: Vol. 9190. Human aspects of information security, privacy, and trust (pp. 592–603). Springer. https://doi.org/10.1007/978-3-319-20376-8_53 [Google Scholar]
- Wilkowska, W., Offermann-van Heek, J., Colonna, L., & Ziefle, M. (2020). Two faces of privacy: Legal and human-centered perspectives of lifelogging applications in home environments. In Q. Gao & J. Zhou (Eds.), Lecture notes in computer science: Vol. 12208. Human aspects of IT for the aged population. Healthy and active aging (pp. 545–564). Springer. https://doi.org/10.1007/978-3-030-50249-2_39 [Crossref], [Google Scholar]
- Wilkowska, W., Ziefle, M., & Alagöz, F. (2012). How user diversity and country of origin impact the readiness to adopt E-health technologies: An intercultural comparison. Work, 41(1), 2072–2080. https://doi.org/10.3233/WOR-2012-0433-2072 [Crossref], [PubMed], [Google Scholar]
- Ziefle, M., Himmel, S., & Wilkowska, W. (2011). When your living space knows what you do: Acceptance of medical home monitoring by different technologies. In A. Holzinger & K. M. Simonic (Eds.), Lecture notes in computer science: Vol. 7058. Information quality in e-health (pp. 607–624). Springer. https://doi.org/10.1007/978-3-642-25364-5_43 [Google Scholar]