Author(s):

  • Thomas Davergne
  • Antsa Rakotozafiarison
  • Hervé Servy
  • Laure Gossec

Abstract:

In healthcare, physical activity can be monitored in two ways: self-monitoring by the patient himself or external monitoring by health professionals. Regarding self-monitoring, wearable activity trackers allow automated passive data collection that educate and motivate patients. Wearing an activity tracker can improve walking time by around 1500 steps per day. However, there are concerns about measurement accuracy (e.g., lack of a common validation protocol or measurement discrepancies between different devices). For external monitoring, many innovative electronic tools are currently used in rheumatology to help support physician time management, to reduce the burden on clinic time, and to prioritize patients who may need further attention. In inflammatory arthritis, such as rheumatoid arthritis, regular monitoring of patients to detect disease flares improves outcomes. In a pilot study applying machine learning to activity tracker steps, we showed that physical activity was strongly linked to disease flares and that patterns of physical activity could be used to predict flares with great accuracy, with a sensitivity and specificity above 95%. Thus, automatic monitoring of steps may lead to improved disease control through potential early identification of disease flares. However, activity trackers have some limitations when applied to rheumatic patients, such as tracker adherence, lack of clarity on long-term effectiveness, or the potential multiplicity of trackers.

Documentation: https://doi.org/10.3390/s20174797

References:

1. Risling T., Martinez J., Young J., Thorp-Froslie N. Evaluating Patient Empowerment in Association with eHealth Technology: Scoping Review. J. Med. Internet Res. 2017;19:e329. doi: 10.2196/jmir.7809. [PMC free article] [PubMed] [CrossRef] []
2. Steinhubl S.R., Muse E.D., Topol E.J. The emerging field of mobile health. Sci. Transl. Med. 2015;7:283rv3. doi: 10.1126/scitranslmed.aaa3487. [PMC free article] [PubMed] [CrossRef] []
3. Berenbaum F. e-Health, social media, and rheumatology: Can they get along? Joint Bone Spine. 2018;85:265–266. doi: 10.1016/j.jbspin.2017.12.007. [PubMed] [CrossRef] []
4. Dixon W.G., Michaud K. Using technology to support clinical care and research in rheumatoid arthritis. Curr. Opin. Rheumatol. 2018;30:276–281. doi: 10.1097/BOR.0000000000000485. [PMC free article] [PubMed] [CrossRef] []
5. Gossec L., Kedra J., Servy H., Pandit A., Stones S., Berenbaum F., Finckh A., Baraliakos X., Stamm T.A., Gomez-Cabrero D., et al. EULAR points to consider for the use of big data in rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2020;79:69–76. doi: 10.1136/annrheumdis-2019-215694. [PubMed] [CrossRef] []
6. Cosoli G., Spinsante S., Scalise L. Wrist-worn and chest-strap wearable devices: Systematic review on accuracy and metrological characteristics. Measurement. 2020;159:107789. doi: 10.1016/j.measurement.2020.107789. [CrossRef] []
7. Palmer D., El Miedany Y. Shared decision making for patients living with inflammatory arthritis. Br. J. Nurs. 2016;25:31–35. doi: 10.12968/bjon.2016.25.1.31. [PubMed] [CrossRef] []
8. Chu A.H.Y., Ng S.H.X., Paknezhad M., Gauterin A., Koh D., Brown M.S., Müller-Riemenschneider F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS ONE. 2017;12:e0172535. doi: 10.1371/journal.pone.0172535. [PMC free article] [PubMed] [CrossRef] []
9. European League against Rheumatism (EULAR) Taskforce 2017 RheumaMap: A Research Roadmap to Transform the Lives of People with Rheumatic and Musculoskeletal Diseases. [(accessed on 25 August 2020)]; Available online: https://www.eular.org/myUploadData/files/RheumaMap.pdf.
10. Gossec L., Berenbaum F., Chauvin P., Lamiraud K., Russo-Marie F., Joubert J.-M., Saraux A. Reporting of patient-perceived impact of rheumatoid arthritis and axial spondyloarthritis over 10 years: A systematic literature review. Rheumatology (Oxf.) 2014;53:1274–1281. doi: 10.1093/rheumatology/ket480. [PMC free article] [PubMed] [CrossRef] []
11. Fenton S.A.M., Veldhuijzen van Zanten J.J.C.S., Duda J.L., Metsios G.S., Kitas G.D. Sedentary behaviour in rheumatoid arthritis: Definition, measurement and implications for health. Rheumatology (Oxf.) 2018;57:213–226. doi: 10.1093/rheumatology/kex053. [PubMed] [CrossRef] []
12. Sturgeon J.A., Finan P.H., Zautra A.J. Affective disturbance in rheumatoid arthritis: Psychological and disease-related pathways. Nat. Rev. Rheumatol. 2016;12:532–542. doi: 10.1038/nrrheum.2016.112. [PMC free article] [PubMed] [CrossRef] []
13. Slavich G.M., Irwin M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014;140:774–815. doi: 10.1037/a0035302. [PMC free article] [PubMed] [CrossRef] []
14. Chehade L., Jaafar Z.A., El Masri D., Zmerly H., Kreidieh D., Tannir H., Itani L., El Ghoch M. Lifestyle Modification in Rheumatoid Arthritis: Dietary and Physical Activity Recommendations Based on Evidence. Curr. Rheumatol. Rev. 2019;15:209–214. doi: 10.2174/1573397115666190121135940. [PubMed] [CrossRef] []
15. Grainger R., Townsley H., White B., Langlotz T., Taylor W.J. Apps for People With Rheumatoid Arthritis to Monitor Their Disease Activity: A Review of Apps for Best Practice and Quality. JMIR Mhealth Uhealth. 2017;5:e7. doi: 10.2196/mhealth.6956. [PMC free article] [PubMed] [CrossRef] []
16. Gossec L., Fayet F., Soubrier M., Foissac F., Molto A., Richette P., Beauvais C., Ruyssen-Witrand A., Perdriger A., Chary-Valckenaere I., et al. Is self-assessment by patients of disease activity acceptable over the long term in rheumatoid arthritis? A 3-year follow-up of 771 patients. Rheumatology (Oxf.) 2019;58:1498–1499. doi: 10.1093/rheumatology/kez094. [PubMed] [CrossRef] []
17. Van Riel P., Alten R., Combe B., Abdulganieva D., Bousquet P., Courtenay M., Curiale C., Gómez-Centeno A., Haugeberg G., Leeb B., et al. Improving inflammatory arthritis management through tighter monitoring of patients and the use of innovative electronic tools. RMD Open. 2016;2 doi: 10.1136/rmdopen-2016-000302. [PMC free article] [PubMed] [CrossRef] []
18. Singh J.A., Saag K.G., Bridges S.L., Akl E.A., Bannuru R.R., Sullivan M.C., Vaysbrot E., McNaughton C., Osani M., Shmerling R.H., et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016;68:1–26. doi: 10.1002/art.39480. [PubMed] [CrossRef] []
19. Van der Heijde D., Ramiro S., Landewé R., Baraliakos X., Van den Bosch F., Sepriano A., Regel A., Ciurea A., Dagfinrud H., Dougados M., et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann. Rheum. Dis. 2017;76:978–991. doi: 10.1136/annrheumdis-2016-210770. [PubMed] [CrossRef] []
20. Gossec L., Baraliakos X., Kerschbaumer A., de Wit M., McInnes I., Dougados M., Primdahl J., McGonagle D.G., Aletaha D., Balanescu A., et al. EULAR recommendations for the management of psoriatic arthritis with pharmacological therapies: 2019 update. Ann. Rheum. Dis. 2020;79:700–712. doi: 10.1136/annrheumdis-2020-217159. [PMC free article] [PubMed] [CrossRef] []
21. Jacquemin C., Servy H., Molto A., Sellam J., Foltz V., Gandjbakhch F., Hudry C., Mitrovic S., Fautrel B., Gossec L. Physical Activity Assessment Using an Activity Tracker in Patients with Rheumatoid Arthritis and Axial Spondyloarthritis: Prospective Observational Study. JMIR mHealth uHealth. 2018;6:e1. doi: 10.2196/mhealth.7948. [PMC free article] [PubMed] [CrossRef] []
22. Wearable Electronics Market Size, Share and Industry Opportunity 2020. [(accessed on 21 July 2020)]; Available online: https://www.alliedmarketresearch.com/body-adapted-wearable-electronics-market.
23. Haghi M., Thurow K., Stoll R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc. Inform. Res. 2017;23:4–15. doi: 10.4258/hir.2017.23.1.4. [PMC free article] [PubMed] [CrossRef] []
24. Paton C., Hansen M., Fernandez-Luque L., Lau A.Y.S. Self-Tracking, Social Media and Personal Health Records for Patient Empowered Self-Care. Contribution of the IMIA Social Media Working Group. Yearb. Med. Inform. 2012;7:16–24. [PubMed] []
25. Kataria S., Ravindran V. Digital health: A new dimension in rheumatology patient care. Rheumatol. Int. 2018;38:1949–1957. doi: 10.1007/s00296-018-4037-x. [PubMed] [CrossRef] []
26. Caspersen C.J., Powell K.E., Christenson G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131. [PMC free article] [PubMed] []
27. Tremblay M.S., Aubert S., Barnes J.D., Saunders T.J., Carson V., Latimer-Cheung A.E., Chastin S.F.M., Altenburg T.M., Chinapaw M.J.M., Altenburg T.M., et al. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017;14:75. doi: 10.1186/s12966-017-0525-8. [PMC free article] [PubMed] [CrossRef] []
28. World Health Organization Global Recommendations on Physical Activity for Health; 2010; ISBN 978-92-4-159997-9. [(accessed on 25 August 2020)]; Available online: https://www.who.int/dietphysicalactivity/global-PA-recs-2010.pdf.
29. Geenen R., Overman C.L., Christensen R., Åsenlöf P., Capela S., Huisinga K.L., Husebø M.E.P., Köke A.J.A., Paskins Z., Pitsillidou I.A., et al. EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018 doi: 10.1136/annrheumdis-2017-212662. [PubMed] [CrossRef] []
30. Peters M.J.L., Symmons D.P.M., McCarey D., Dijkmans B.A.C., Nicola P., Kvien T.K., McInnes I.B., Haentzschel H., Gonzalez-Gay M.A., Provan S., et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 2010;69:325–331. doi: 10.1136/ard.2009.113696. [PubMed] [CrossRef] []
31. Liang H., Zhang H., Ji H., Wang C. Effects of home-based exercise intervention on health-related quality of life for patients with ankylosing spondylitis: A meta-analysis. Clin. Rheumatol. 2015;34:1737–1744. doi: 10.1007/s10067-015-2913-2. [PubMed] [CrossRef] []
32. Regnaux J.-P., Davergne T., Palazzo C., Roren A., Rannou F., Boutron I., Lefevre-Colau M.-M. Exercise programmes for ankylosing spondylitis. Cochrane Database Syst. Rev. 2019 doi: 10.1002/14651858.CD011321.pub2. [PMC free article] [PubMed] [CrossRef] []
33. Lee I.-M., Shiroma E.J., Lobelo F., Puska P., Blair S.N., Katzmarzyk P.T. Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380:219–229. doi: 10.1016/S0140-6736(12)61031-9. [PMC free article] [PubMed] [CrossRef] []
34. World Health Organization World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals. [(accessed on 25 August 2020)]; 2020, Licence: CC BY-NC-SA 3.0 IGO. Available online: https://www.who.int/gho/publications/world_health_statistics/2020/EN_WHS_2020_TOC.pdf?ua=1.
35. O’Dwyer T., Rafferty T., O’Shea F., Gissane C., Wilson F. Physical activity guidelines: Is the message getting through to adults with rheumatic conditions? Rheumatology. 2014;53:1812–1817. doi: 10.1093/rheumatology/keu177. [PubMed] [CrossRef] []
36. Barker J., Smith Byrne K., Doherty A., Foster C., Rahimi K., Ramakrishnan R., Woodward M., Dwyer T. Physical activity of UK adults with chronic disease: Cross-sectional analysis of accelerometer-measured physical activity in 96 706 UK Biobank participants. Int. J. Epidemiol. 2019 doi: 10.1093/ije/dyz148. [PMC free article] [PubMed] [CrossRef] []
37. Mansi S., Milosavljevic S., Baxter G.D., Tumilty S., Hendrick P. A systematic review of studies using pedometers as an intervention for musculoskeletal diseases. BMC Musculoskelet. Disord. 2014;15:231. doi: 10.1186/1471-2474-15-231. [PMC free article] [PubMed] [CrossRef] []
38. McDonough S.M., Tully M.A., Boyd A., O’Connor S.R., Kerr D.P., O’Neill S.M., Delitto A., Bradbury I., Tudor-Locke C., Baxter G.D., et al. Pedometer-driven walking for chronic low back pain: A feasibility randomized controlled trial. Clin. J. Pain. 2013;29:972–981. doi: 10.1097/AJP.0b013e31827f9d81. [PMC free article] [PubMed] [CrossRef] []
39. O’Driscoll R., Turicchi J., Beaulieu K., Scott S., Matu J., Deighton K., Finlayson G., Stubbs J. How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. Br. J. Sports Med. 2020;54:332–340. doi: 10.1136/bjsports-2018-099643. [PubMed] [CrossRef] []
40. Site Officiel Fitbit: Coachs Électroniques pour la Forme et le Sport, et Bien plus Encore. [(accessed on 21 July 2020)]; Available online: https://www.fitbit.com/fr/home.
41. Fitness Trackers Market Size, Share and Growth Analysis | Forecast. [(accessed on 21 July 2020)]; Available online: https://www.alliedmarketresearch.com/fitness-tracker-market.
42. Mercer K., Li M., Giangregorio L., Burns C., Grindrod K. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis. JMIR Mhealth Uhealth. 2016;4:e40. doi: 10.2196/mhealth.4461. [PMC free article] [PubMed] [CrossRef] []
43. Patel M.S., Asch D.A., Volpp K.G. Wearable devices as facilitators, not drivers, of health behavior change. JAMA. 2015;313:459–460. doi: 10.1001/jama.2014.14781. [PubMed] [CrossRef] []
44. Lyons E.J., Lewis Z.H., Mayrsohn B.G., Rowland J.L. Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. J. Med. Internet Res. 2014;16:e192. doi: 10.2196/jmir.3469. [PMC free article] [PubMed] [CrossRef] []
45. Murray E., Hekler E.B., Andersson G., Collins L.M., Doherty A., Hollis C., Rivera D.E., West R., Wyatt J.C. Evaluating Digital Health Interventions: Key Questions and Approaches. Am. J. Prev. Med. 2016;51:843–851. doi: 10.1016/j.amepre.2016.06.008. [PMC free article] [PubMed] [CrossRef] []
46. Schaller A., Rudolf K., Dejonghe L., Grieben C., Froboese I. Influencing Factors on the Overestimation of Self-Reported Physical Activity: A Cross-Sectional Analysis of Low Back Pain Patients and Healthy Controls. Biomed. Res. Int. 2016;2016 doi: 10.1155/2016/1497213. [PMC free article] [PubMed] [CrossRef] []
47. Copeland J.L., Ashe M.C., Biddle S.J., Brown W.J., Buman M.P., Chastin S., Gardiner P.A., Inoue S., Jefferis B.J., Oka K., et al. Sedentary time in older adults: A critical review of measurement, associations with health, and interventions. Br. J. Sports Med. 2017;51:1539. doi: 10.1136/bjsports-2016-097210. [PubMed] [CrossRef] []
48. Eisele A., Schagg D., Krämer L.V., Bengel J., Göhner W. Behaviour change techniques applied in interventions to enhance physical activity adherence in patients with chronic musculoskeletal conditions: A systematic review and meta-analysis. Patient Educ. Couns. 2019;102:25–36. doi: 10.1016/j.pec.2018.09.018. [PubMed] [CrossRef] []
49. Davergne T., Pallot A., Dechartres A., Fautrel B., Gossec L. Use of wearable activity trackers to improve physical activity behavior in rheumatic and musculoskeletal diseases: A systematic review and meta-analysis. Arthritis Care Res. 2018 doi: 10.1002/acr.23752. [PubMed] [CrossRef] []
50. Goode A.P., Hall K.S., Batch B.C., Huffman K.M., Hastings S.N., Allen K.D., Shaw R.J., Kanach F.A., McDuffie J.R., Kosinski A.S., et al. The Impact of Interventions that Integrate Accelerometers on Physical Activity and Weight Loss: A Systematic Review. Ann. Behav. Med. 2017;51:79–93. doi: 10.1007/s12160-016-9829-1. [PMC free article] [PubMed] [CrossRef] []
51. Lewis Z.H., Lyons E.J., Jarvis J.M., Baillargeon J. Using an electronic activity monitor system as an intervention modality: A systematic review. BMC Public Health. 2015;15 doi: 10.1186/s12889-015-1947-3. [PMC free article] [PubMed] [CrossRef] []
52. Ridgers N.D., McNarry M.A., Mackintosh K.A. Feasibility and Effectiveness of Using Wearable Activity Trackers in Youth: A Systematic Review. JMIR Mhealth Uhealth. 2016;4:e129. doi: 10.2196/mhealth.6540. [PMC free article] [PubMed] [CrossRef] []
53. De Vries H.J., Kooiman T.J.M., van Ittersum M.W., van Brussel M., de Groot M. Do activity monitors increase physical activity in adults with overweight or obesity? A systematic review and meta-analysis. Obesity (Silver Spring) 2016;24:2078–2091. doi: 10.1002/oby.21619. [PubMed] [CrossRef] []
54. Niedermann K., Nast I., Ciurea A., Vliet Vlieland T., van Bodegom-Vos L. Barriers and facilitators of vigorous cardiorespiratory training in axial Spondyloarthritis: Surveys among patients, physiotherapists, rheumatologists. Arthritis Care Res. 2018 doi: 10.1002/acr.23705. [PubMed] [CrossRef] []
55. Mazières B., Thevenon A., Coudeyre E., Chevalier X., Revel M., Rannou F. Adherence to, and results of, physical therapy programs in patients with hip or knee osteoarthritis. Development of French clinical practice guidelines. Joint Bone Spine. 2008;75:589–596. doi: 10.1016/j.jbspin.2008.02.016. [PubMed] [CrossRef] []
56. Hammer N.M., Midtgaard J., Hetland M.L., Krogh N.S., Esbensen B.A. Physical activity behaviour in men with inflammatory joint disease: A cross-sectional register-based study. Rheumatology (Oxf.) 2018;57:803–812. doi: 10.1093/rheumatology/kex498. [PubMed] [CrossRef] []
57. Sechrist K.R., Walker S.N., Pender N.J. Development and psychometric evaluation of the exercise benefits/barriers scale. Res. Nurs. Health. 1987;10:357–365. doi: 10.1002/nur.4770100603. [PubMed] [CrossRef] []
58. Gay C., Eschalier B., Levyckyj C., Bonnin A., Coudeyre E. Motivators for and barriers to physical activity in people with knee osteoarthritis: A qualitative study. Joint Bone Spine. 2018;85:481–486. doi: 10.1016/j.jbspin.2017.07.007. [PubMed] [CrossRef] []
59. Coste N., Guiguet-Auclair C., Gerbaud L., Pereira B., Berland P., Gay C., Coudeyre E. Perceived barriers to and facilitators of physical activity in people with knee osteoarthritis: Development of the Evaluation of the Perception of Physical Activity questionnaire. Ann. Phys. Rehabil. Med. 2019 doi: 10.1016/j.rehab.2019.07.009. [PubMed] [CrossRef] []
60. Marcus B.H., Selby V.C., Niaura R.S., Rossi J.S. Self-efficacy and the stages of exercise behavior change. Res. Q. Exerc. Sport. 1992;63:60–66. doi: 10.1080/02701367.1992.10607557. [PubMed] [CrossRef] []
61. Spencer L., Adams T.B., Malone S., Roy L., Yost E. Applying the transtheoretical model to exercise: A systematic and comprehensive review of the literature. Health Promot. Pract. 2006;7:428–443. doi: 10.1177/1524839905278900. [PubMed] [CrossRef] []
62. Smolen J.S., Landewé R.B.M., Bijlsma J.W.J., Burmester G.R., Dougados M., Kerschbaumer A., McInnes I.B., Sepriano A., van Vollenhoven R.F., de Wit M., et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020;79:685–699. doi: 10.1136/annrheumdis-2019-216655. [PubMed] [CrossRef] []
63. Smolen J.S., Breedveld F.C., Burmester G.R., Bykerk V., Dougados M., Emery P., Kvien T.K., Navarro-Compán M.V., Oliver S., Schoels M., et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 2016;75:3–15. doi: 10.1136/annrheumdis-2015-207524. [PMC free article] [PubMed] [CrossRef] []
64. Alten R., Pohl C., Choy E.H., Christensen R., Furst D.E., Hewlett S.E., Leong A., May J.E., Sanderson T.C., Strand V., et al. Developing a construct to evaluate flares in rheumatoid arthritis: A conceptual report of the OMERACT RA Flare Definition Working Group. J. Rheumatol. 2011;38:1745–1750. doi: 10.3899/jrheum.110400. [PubMed] [CrossRef] []
65. Jacquemin C., Molto A., Servy H., Sellam J., Foltz V., Gandjbakhch F., Hudry C., Mitrovic S., Granger B., Fautrel B., et al. Flares assessed weekly in patients with rheumatoid arthritis or axial spondyloarthritis and relationship with physical activity measured using a connected activity tracker: A 3-month study. RMD Open. 2017;3:e000434. doi: 10.1136/rmdopen-2017-000434. [PMC free article] [PubMed] [CrossRef] []
66. Bykerk V.P., Shadick N., Frits M., Bingham C.O., Jeffery I., Iannaccone C., Weinblatt M., Solomon D.H. Flares in rheumatoid arthritis: Frequency and management. A report from the BRASS registry. J. Rheumatol. 2014;41:227–234. doi: 10.3899/jrheum.121521. [PubMed] [CrossRef] []
67. Bykerk V.P., Bingham C.O., Choy E.H., Lin D., Alten R., Christensen R., Furst D.E., Hewlett S., Leong A., March L., et al. Identifying flares in rheumatoid arthritis: Reliability and construct validation of the OMERACT RA Flare Core Domain Set. RMD Open. 2016;2:e000225. doi: 10.1136/rmdopen-2015-000225. [PMC free article] [PubMed] [CrossRef] []
68. Gossec L., Guyard F., Leroy D., Lafargue T., Seiler M., Jacquemin C., Molto A., Sellam J., Foltz V., Gandjbakhch F., et al. Detection of Flares by Decrease in Physical Activity, Collected Using Wearable Activity Trackers in Rheumatoid Arthritis or Axial Spondyloarthritis: An Application of Machine Learning Analyses in Rheumatology. Arthritis Care Res. (Hoboken) 2019;71:1336–1343. doi: 10.1002/acr.23768. [PubMed] [CrossRef] []
69. Hewlett S., Sanderson T., May J., Alten R., Bingham C.O., Cross M., March L., Pohl C., Woodworth T., Bartlett S.J. “I’m hurting, I want to kill myself”: Rheumatoid arthritis flare is more than a high joint count-an international patient perspective on flare where medical help is sought. Rheumatology (Oxf. Engl.) 2012;51:69–76. doi: 10.1093/rheumatology/keq455. [PubMed] [CrossRef] []
70. Gossec L., Portier A., Landewé R., Etcheto A., Navarro-Compán V., Kroon F., van der Heijde D., Dougados M. Preliminary definitions of ‘flare’ in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: An ASAS initiative. Ann. Rheum. Dis. 2016;75:991–996. doi: 10.1136/annrheumdis-2015-208593. [PubMed] [CrossRef] []
71. Markusse I.M., Dirven L., Gerards A.H., van Groenendael J.H.L.M., Ronday H.K., Kerstens P.J.S.M., Lems W.F., Huizinga T.W.J., Allaart C.F. Disease flares in rheumatoid arthritis are associated with joint damage progression and disability: 10-year results from the BeSt study. Arthritis Res. Ther. 2015;17:232. doi: 10.1186/s13075-015-0730-2. [PMC free article] [PubMed] [CrossRef] []
72. Ometto F., Raffeiner B., Bernardi L., Bostsios C., Veronese N., Punzi L., Doria A. Self-reported flares are predictors of radiographic progression in rheumatoid arthritis patients in 28-joint disease activity score remission: A 24-month observational study. Arthritis Res. Ther. 2016;18:89. doi: 10.1186/s13075-016-0986-1. [PMC free article] [PubMed] [CrossRef] []
73. Lillegraven S., Prince F.H.M., Shadick N.A., Bykerk V.P., Lu B., Frits M.L., Iannaccone C.K., Kvien T.K., Haavardsholm E.A., Weinblatt M.E., et al. Remission and radiographic outcome in rheumatoid arthritis: Application of the 2011 ACR/EULAR remission criteria in an observational cohort. Ann. Rheum. Dis. 2012;71:681–686. doi: 10.1136/ard.2011.154625. [PubMed] [CrossRef] []
74. Van Gestel A.M., Prevoo M.L., van ’t Hof M.A., van Rijswijk M.H., van de Putte L.B., van Riel P.L. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League against Rheumatism Criteria. Arthritis Rheum. 1996;39:34–40. doi: 10.1002/art.1780390105. [PubMed] [CrossRef] []
75. Molto A., Gossec L., Meghnathi B., Landewé R.B.M., van der Heijde D., Atagunduz P., Elzorkany B.K., Akkoc N., Kiltz U., Gu J., et al. An Assessment in SpondyloArthritis International Society (ASAS)-endorsed definition of clinically important worsening in axial spondyloarthritis based on ASDAS. Ann. Rheum. Dis. 2018;77:124–127. doi: 10.1136/annrheumdis-2017-212178. [PubMed] [CrossRef] []
76. Fautrel B., Morel J., Berthelot J.-M., Constantin A., De Bandt M., Gaudin P., Maillefert J.-F., Meyer O., Pham T., Saraux A., et al. Validation of FLARE-RA, a Self-Administered Tool to Detect Recent or Current Rheumatoid Arthritis Flare. Arthritis Rheumatol. (Hoboken N.J.) 2017;69:309–319. doi: 10.1002/art.39850. [PubMed] [CrossRef] []
77. Gossec L., Cantagrel A., Soubrier M., Berthelot J.-M., Joubert J.-M., Combe B., Czarlewski W., Wendling D., Dernis E., Grange L., et al. An e-health interactive self-assessment website (Sanoia®) in rheumatoid arthritis. A 12-month randomized controlled trial in 320 patients. Joint Bone Spine. 2018;85:709–714. doi: 10.1016/j.jbspin.2017.11.015. [PubMed] [CrossRef] []
78. Berthelot J.-M., De Bandt M., Morel J., Benatig F., Constantin A., Gaudin P., Le Loet X., Maillefert J.-F., Meyer O., Pham T., et al. A tool to identify recent or present rheumatoid arthritis flare from both patient and physician perspectives: The “FLARE” instrument. Ann. Rheum. Dis. 2012;71:1110–1116. doi: 10.1136/ard.2011.150656. [PubMed] [CrossRef] []
79. R-Packages—Revision 7878: /trunk/nlme. [(accessed on 13 August 2020)]; Available online: https://svn.r-project.org/R-packages/trunk/nlme/
80. Kedra J., Gossec L. Big Data and artificial intelligence: Will they change our practice? Joint Bone Spine. 2020;87:107–109. doi: 10.1016/j.jbspin.2019.09.001. [PubMed] [CrossRef] []
81. Parikh R., Mathai A., Parikh S., Chandra Sekhar G., Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008;56:45–50. doi: 10.4103/0301-4738.37595. [PMC free article] [PubMed] [CrossRef] []
82. Richter J., Kampling C., Schneider M. Electronic Patient-Reported Outcome Measures (ePROMs) in Rheumatology. In: El Miedany Y., editor. Patient Reported Outcome Measures in Rheumatic Diseases. Springer International Publishing; Cham, Switzerland: 2016. pp. 371–388. []
83. Kedra J., Radstake T., Pandit A., Baraliakos X., Berenbaum F., Finckh A., Fautrel B., Stamm T.A., Gomez-Cabrero D., Pristipino C., et al. Current status of use of big data and artificial intelligence in RMDs: A systematic literature review informing EULAR recommendations. RMD Open. 2019;5:e001004. doi: 10.1136/rmdopen-2019-001004. [PMC free article] [PubMed] [CrossRef] []
84. Shih P., Han K., Shehan Poole E., Rosson M.B., Carroll J. Use and Adoption Challenges of Wearable Activity Trackers. [(accessed on 15 March 2015)]; In Proceedings of the iConference. Available online: http://hdl.handle.net/2142/73649.
85. Abhishek A., Doherty M. Education and non-pharmacological approaches for gout. Rheumatology (Oxf.) 2018;57:i51–i58. doi: 10.1093/rheumatology/kex421. [PubMed] [CrossRef] []
86. Latif Z.P., Nakafero G., Jenkins W., Doherty M., Abhishek A. Implication of nurse intervention on engagement with urate-lowering drugs: A qualitative study of participants in a RCT of nurse led care. Joint Bone Spine. 2019;86:357–362. doi: 10.1016/j.jbspin.2018.10.008. [PMC free article] [PubMed] [CrossRef] []
87. Li L., Sayre E.C., Grewal N., Chien J., Noonan G., Falck R., Best J., Liu-Ambrose T., Hoens A., Gray V., et al. Efficacy of a Wearable-Enabled Physical Activity Counselling Program for People with Knee Osteoarthritis [abstract] Arthritis Rheumatol. 2017;69(Suppl. 10) []
88. Talbot L., Jm G., Tn H., Ej M. A home-based pedometer-driven walking program to increase physical activity in older adults with osteoarthritis of the knee: A preliminary study. J. Am. Geriatr. Soc. 2003;51:387–392. doi: 10.1046/j.1532-5415.2003.51113.x. [PubMed] [CrossRef] []
89. Bassett D.R., Toth L.P., LaMunion S.R., Crouter S.E. Step Counting: A Review of Measurement Considerations and Health-Related Applications. Sports Med. 2017;47:1303–1315. doi: 10.1007/s40279-016-0663-1. [PMC free article] [PubMed] [CrossRef] []
90. Bassett D.R., Ainsworth B.E., Swartz A.M., Strath S.J., O’Brien W.L., King G.A. Validity of four motion sensors in measuring moderate intensity physical activity. Med. Sci. Sports Exerc. 2000;32:S471–S480. doi: 10.1097/00005768-200009001-00006. [PubMed] [CrossRef] []
91. Westerterp K.R. Assessment of physical activity: A critical appraisal. Eur. J. Appl. Physiol. 2009;105:823–828. doi: 10.1007/s00421-009-1000-2. [PubMed] [CrossRef] []
92. Batterham R.W., Hawkins M., Collins P.A., Buchbinder R., Osborne R.H. Health literacy: Applying current concepts to improve health services and reduce health inequalities. Public Health. 2016;132:3–12. doi: 10.1016/j.puhe.2016.01.001. [PubMed] [CrossRef] []
93. Whitehead M. Definition of physical literacy and clarification of related issues. J. Sport Sci. Phys. Educ. 2013;65:28–33. []
94. Valatkaitytė V., Česnaitienė V.J. Relationship between Health Literacy, Physical Activity, Motivation and Barriers of People Aged 30–50 Years. Balt. J. Sport Health Sci. 2019;2 doi: 10.33607/bjshs.v2i113.787. [CrossRef] []
95. Morony S., Lamph E., Muscat D., Nutbeam D., Dhillon H.M., Shepherd H., Smith S., Khan A., Osborne J., Meshreky W., et al. Improving health literacy through adult basic education in Australia. Health Promot. Int. 2018;33:867–877. doi: 10.1093/heapro/dax028. [PubMed] [CrossRef] []
96. Mahloko L., Adebesin F. A Systematic Literature Review of the Factors that Influence the Accuracy of Consumer Wearable Health Device Data. In: Hattingh M., Matthee M., Smuts H., Pappas I., Dwivedi Y., Mäntymäki M., editors. Responsible Design, Implementation and Use of Information and Communication Technology. Springer International Publishing; Cham, Switzerland: 2020. pp. 96–107. [CrossRef] []
97. Elsaleh T., Enshaeifar S., Rezvani R., Acton S.T., Janeiko V., Bermudez-Edo M. IoT-Stream: A Lightweight Ontology for Internet of Things Data Streams and Its Use with Data Analytics and Event Detection Services. Sensors. 2020;20:953. doi: 10.3390/s20040953. [PMC free article] [PubMed] [CrossRef] []
98. North F., Chaudhry R. Apple HealthKit and Health App: Patient Uptake and Barriers in Primary Care. Telemed. e-Health. 2016;22:608–613. doi: 10.1089/tmj.2015.0106. [PubMed] [CrossRef] []
99. Danesi G., Pralong M., Panese F., Burnand B., Grossen M. Techno-social reconfigurations in diabetes (self-) care. Soc. Stud. Sci. 2020 doi: 10.1177/0306312720903493. [PubMed] [CrossRef] []
100. Commissioner O., Statement from FDA Commissioner Scott Gottlieb, M.D on Steps toward a New, Tailored Review Framework for Artificial Intelligence-Based Medical Devices [(accessed on 7 July 2020)]; Available online: https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-steps-toward-new-tailored-review-framework-artificial.
101. Rodrigues J.J.P.C., Solic P., Alberti A.M. LoRaWAN—low power WAN protocol for internet of things: A review and opportunities; Proceedings of the 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech); Split, Croatia. 12 July 2017; pp. 1–6. []
102. Newman D., Tong M., Levine E., Kishore S. Prevalence of multiple chronic conditions by U.S. state and territory, 2017. PLoS ONE. 2020;15:e0232346. doi: 10.1371/journal.pone.0232346. [PMC free article] [PubMed] [CrossRef] []
103. Hitchon C.A., Boire G., Haraoui B., Keystone E., Pope J., Jamal S., Tin D., Thorne C., Bykerk V.P. Self-reported comorbidity is common in early inflammatory arthritis and associated with poorer function and worse arthritis disease outcomes: Results from the Canadian Early Arthritis Cohort. Rheumatology (Oxf.) 2016;55:1751–1762. doi: 10.1093/rheumatology/kew061. [PubMed] [CrossRef] []
104. Maeng D.D., Martsolf G.R., Scanlon D.P., Christianson J.B. Care Coordination for the Chronically Ill: Understanding the Patient’s Perspective. Health Serv. Res. 2012;47:1960–1979. doi: 10.1111/j.1475-6773.2012.01405.x. [PMC free article] [PubMed] [CrossRef] []
105. Cappon G., Acciaroli G., Vettoretti M., Facchinetti A., Sparacino G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics. 2017;6:65. doi: 10.3390/electronics6030065. [CrossRef] []
106. Hirsch I.B., Armstrong D., Bergenstal R.M., Buckingham B., Childs B.P., Clarke W.L., Peters A., Wolpert H. Clinical Application of Emerging Sensor Technologies in Diabetes Management: Consensus Guidelines for Continuous Glucose Monitoring (CGM) Diabetes Technol. Ther. 2008;10:232–246. doi: 10.1089/dia.2008.0016. [PubMed] [CrossRef] []
107. Garg S.K., Shah V. Closed-loop insulin delivery systems for patients with diabetes. Lancet Digit. Health. 2019;1:e2–e3. doi: 10.1016/S2589-7500(19)30007-X. [CrossRef] []
108. Maor E., Sara J.D., Orbelo D.M., Lerman L.O., Levanon Y., Lerman A. Voice Signal Characteristics Are Independently Associated with Coronary Artery Disease. Mayo Clin. Proc. 2018;93:840–847. doi: 10.1016/j.mayocp.2017.12.025. [PubMed] [CrossRef] []
109. Wu C. Non-Invasive Detection of Moving and Stationary Human with WiFi.|BibSonomy. IEEE J. Sel. Areas Commun. 2015;33:2329–2342. doi: 10.1109/JSAC.2015.2430294. [CrossRef] []