Author(s):
- Annamina Riedera
- U. Yeliz Eseryel,
- Christiane Lehrer
- Reinhard Jung
Abstract:
Wearables provide great opportunities for improving personal health, but research challenges their capacity to evoke behavioral change effectively. Realizing the full potential of wearables requires a better understanding of users’ behavior change processes. Based on self-efficacy theory, we investigate how wearables influence users’ perceptions of their self-efficacy and subsequent health behavior. Using narrative interviews with twenty-five long-term wearable users, we show that wearables can have both positive and negative effects on users’ perceptions of their self-efficacy and that these perceptions are subject to internal and external contexts, which can positively or negatively affect users’ compliance. We also find that the internal context may have a compounding or neutralizing effect on self-efficacy, despite an adverse external context. Our study shows the contextual and transient nature of self-efficacy, thus contributing to self-efficacy theory and research on wearables and offering practical design implications.
Documentation:
https://doi.org/10.1080/10447318.2020.1819669
References:
- Accenture Research. (2018). Consumer survey on digital health. Retrieved April 12, 2020, from https://www.accenture.com/_acnmedia/PDF-71/Accenture-Health-Meet-Todays-Healthcare-Team-Patients-Doctors-Machines.pdf#zoom=50 [Google Scholar]
- Alrushiedat, N., & Olfman, L. (2014). Anchoring for self-efficacy and success: An anchored asynchronous online discussion case. Journal of Information Systems Education, 25(2), 107–116. https://aisel.aisnet.org/jise/vol25/iss2/2 [Google Scholar]
- Asimakopoulos, S., Asimakopoulos, G., & Spillers, F. (2017). Motivation and user engagement in fitness tracking: Heuristics for mobile healthcare wearables. Informatics, 4(5), 1–16. https://doi.org/10.3390/informatics4010005 [Google Scholar]
- Avgerou, C. (2019). Contextual explanation: Alternative approaches and persistent challenges. MIS Quarterly, 43(3), 977–1006. https://doi.org/10.25300/MISQ/2019/13990 [Crossref], [Web of Science ®], [Google Scholar]
- Bamberger, P. (2008). Beyond contextualization: Using context theories to narrow the micro-macro gap in management research. Academy of Management Journal, 51(5), 839–846. https://doi.org/10.5465/amj.2008.34789630 [Crossref], [Web of Science ®], [Google Scholar]
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215. https://doi.org/10.1037/0033-295X.84.2.191 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122–147. https://doi.org/10.1037/0003-066X.37.2.122 [Crossref], [Web of Science ®], [Google Scholar]
- Bandura, A. (1997). Self-efficacy. The exercise of control. W.H. Freeman and Company. [Google Scholar]
- Benbunan-Fich, R. (2019). An affordance lens for wearable information systems. European Journal of Information Systems, 28(3), 256–271. https://doi.org/10.1080/0960085X.2018.1512945 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Blanchard, C. M., Fortier, M., Sweet, S., O’Sullivan, T., Hogg, W., Reid, R. D., & Sigal, R. J. (2007). Explaining physical activity levels from a self-efficacy perspective: The physical activity counseling trial. Annals of Behavioral Medicine, 34(3), 323–328. https://doi.org/10.1007/BF02874557 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Blanchard, C. M., Rodgers, W. M., Courneya, K. S., Daub, B., & Knapik, G. (2002). Does barrier efficacy mediate the gender-exercise adherence relationship during phase II cardiac rehabilitation? Rehabilitation Psychology, 47(1), 106–120. https://doi.org/10.1037/0090-5550.47.1.106 [Crossref], [Web of Science ®], [Google Scholar]
- Brickwood, K.-J., Watson, G., O’Brien, J., & Williams, A. D. (2019). Consumer-based wearable activity trackers increase physical activity participation: Systematic review and meta-analysis. JMIR mHealth uHealth, 7(4), 1–20. https://doi.org/10.2196/11819 [Crossref], [Web of Science ®], [Google Scholar]
- Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a new general self-efficacy scale. Organizational Research Methods, 4(1), 62–83. https://doi.org/10.1177/109442810141004 [Crossref], [Web of Science ®], [Google Scholar]
- Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. Management Information Systems Quarterly, 19(2), 189–211. https://doi.org/10.2307/249688 [Crossref], [Web of Science ®], [Google Scholar]
- De Moya, J.-F., & Pallud, J. (2020). From panopticon to heautopticon: A new form of surveillance introduced by quantified-self practices. Information Systems Journal, 1–37. https://doi.org/10.1111/isj.12284 [Web of Science ®], [Google Scholar]
- Fogg, B. J. (2003). Persuasive technology: Using computers to change what we think and do. Morgan Kaufmann Publishers. [Crossref], [Google Scholar]
- Forget, A., Chiasson, S., van Oorschot, P. C., & Biddle, R. (2008). Persuasion for stronger passwords: Motivation and pilot study. In H. Oinas-Kukkonen, P. Hasle, M. Harjumaa, K. Segerståhl, & P. Øhrstrøm (Eds.), Persuasive (Vol. 5033, pp. 140–150). Springer. [Crossref], [Google Scholar]
- Gimpel, H., Nissen, M., & Görlitz, R. A. (2013). Quantifying the quantified self: A study on the motivation of patients to track their own health. In Proceedings of the International Conference on Information Systems (ICIS 2013), Milan, Italy. [Google Scholar]
- IDC. (2018). Global wearable market grows 7.7% in 4Q17 and 10.3% in 2017 as apple seizes the leader position, says IDC. ICD. Retrieved November 11, 2018, from https://www.idc.com/getdoc.jsp?containerId=prUS43598218 [Google Scholar]
- Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., & Belle, S. H. (2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: The IDEA randomized clinical trial. Journal of the American Medical Association, 316(11), 1161–1171. https://doi.org/10.1001/jama.2016.12858 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Khalil, A., & Abdallah, S. (2013). Harnessing social dynamics through persuasive technology to promote healthier lifestyle. Computers in Human Behavior, 29(6), 2674–2681. https://doi.org/10.1016/j.chb.2013.07.008 [Crossref], [Web of Science ®], [Google Scholar]
- Kuonanoja, L., Langrial, S., Lappalainen, R., Lappalainen, P., & Oinas-Kukkonen, H. (2015). Treating depression with a behavior change support system without face-to-face therapy. Transactions on Human Computer Interaction, 7(3), 192–210. https://doi.org/10.17705/1thci.00072 [Crossref], [Google Scholar]
- Küsters, I. (2009). Narrative Interviews: Grundlagen und Anwendungen (2nd ed.). VS Verlag für Sozialwissenschaften. [Crossref], [Google Scholar]
- Langrial, S. U., & Lappalainen, P. (2016). Information systems for improving mental health: Six emerging themes of research. In Proceedings of the Pacific Asia Conference on Information Systems (PACIS 2016), Chiayi, Taiwan. [Google Scholar]
- Laurie, J., & Blandford, A. (2016). Making time for mindfulness. International Journal of Medical Informatics, 96, 38–50. https://doi.org/10.1016/j.ijmedinf.2016.02.010 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Ledger, D., & McCaffrey, D. (2014). Inside wearables part 1: How behavior change unlocks long-term engagement. Medium. Endeavour Partners. Retrieved May 06, 2020, from https://medium.com/@endeavourprtnrs/inside-wearable-how-the-science-of-human-behavior-change-offers-the-secret-to-long-term-engagement-a15b3c7d4cf3 (visited: 2020/05/06) [Google Scholar]
- Liang, H., & Xue, Y. (2009). Avoidance of information technology threats: A theoretical perspective. Management Information Systems Quarterly, 33(1), 71–90. https://doi.org/10.2307/20650279 [Crossref], [Web of Science ®], [Google Scholar]
- Lim, J. S., & Noh, G. Y. (2017). Effects of gain-versus loss-framed performance feedback on the use of fitness apps: Mediating role of exercise self-efficacy and outcome expectations of exercise. Computers in Human Behavior, 77, 249–257. https://doi.org/10.1016/j.chb.2017.09.006 [Crossref], [Web of Science ®], [Google Scholar]
- Lyons, E. J., Lewis, Z. H., Mayrsohn, B. G., & Rowland, J. L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16(8), 1–15. https://doi.org/10.2196/jmir.3469 [Crossref], [Web of Science ®], [Google Scholar]
- Maddison, R., & Prapavessis, H. (2016). Using self-efficacy and intention to predict exercise compliance among patients with ischemic heart disease. Journal of Sport & Exercise Psychology, 26(4), 511–524. https://doi.org/10.1123/jsep.26.4.511 [Crossref], [Google Scholar]
- Mercer, K., Li, M., Giangregorio, L., Burns, C., & Grindrod, K. (2016). Behavior change techniques present in wearable activity trackers: A critical analysis. JMIR mHealth uHealth, 4(2), 1–9. https://doi.org/10.2196/mhealth.4461 [Crossref], [Web of Science ®], [Google Scholar]
- Mettler, T., & Wulf, J. (2019). Physiolytics at the workplace: Affordances and constraints of wearables use from an employee’s perspective. Information Systems Journal, 29(1), 245–273. https://doi.org/10.1111/isj.12205 [Crossref], [Web of Science ®], [Google Scholar]
- Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., & Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46(1), 81–95. https://doi.org/10.1007/s12160-013-9486-6 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage. [Crossref], [Google Scholar]
- Mirsch, T., Lehrer, C., & Jung, R. (2017). Digital nudging: Altering user behavior in digital environments. In Proceedings of the 13th International Conference on Wirtschaftsinformatik (pp. 634–648). St. Gallen. [Google Scholar]
- Myers, M. D. (1997). Qualitative research in information systems. Management Information Systems Quarterly, 21(2), 241–242. https://doi.org/10.2307/249422 [Crossref], [Web of Science ®], [Google Scholar]
- Myers, M. D. (2009). Qualitative research in business & management. Sage. [Google Scholar]
- Myneni, S., Cobb, N., & Cohen, T. (2016). In pursuit of theoretical ground in behavior change support systems: Analysis of peer-to-peer communication in a health-related online community. Journal of Medical Internet Research, 18(2), 1–21. https://doi.org/10.2196/jmir.4671 [Crossref], [Web of Science ®], [Google Scholar]
- Ogbanufe, O., & Gerhart, N. (2018). Watch it! Factors driving continued feature use of the smartwatch. International Journal of Human-computer Interaction, 34(11), 999–1014. https://doi.org/10.1080/10447318.2017.1404779 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Oinas-Kukkonen, H. (2013). A foundation for the study of behavior change support systems. Personal and Ubiquitous Computing, 17, 1223–1235. https://doi.org/10.1007/s00779-012-0591-5 [Crossref], [Web of Science ®], [Google Scholar]
- Oinas-Kukkonen, H., & Harjumaa, M. (2009). Persuasive systems design: Key issues, process model, and system features. Communications of the Association for Information Systems, 24(28), 485–500. https://doi.org/10.17705/1CAIS.02428 [Google Scholar]
- Pavlou, P. A., & Fygenson, M. (2006). Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior. Management Information Systems Quarterly, 30(1), 115–143. https://doi.org/10.2307/25148720 [Crossref], [Web of Science ®], [Google Scholar]
- Phua, J. (2013). Participating in health issue-specific social networking sites to quit smoking: How does online social interconnectedness influence smoking cessation self-efficacy? Journal of Communication, 63(5), 933–952. https://doi.org/10.1111/jcom.12054 [Crossref], [Web of Science ®], [Google Scholar]
- Rahman, M. S., Ko, M., Warren, J., & Carpenter, D. (2016). Healthcare Technology Self-Efficacy (HTSE) and its influence on individual attitude: An empirical study. Computers in Human Behavior, 58, 12–24. https://doi.org/10.1016/j.chb.2015.12.016 [Crossref], [Web of Science ®], [Google Scholar]
- Reychav, I., Beeri, R., Balapour, A., Raban, D. R., Sabherwal, R., & Azuri, J. (2019). How reliable are self-assessments using mobile technology in healthcare? The effects of technology identity and self-efficacy. Computers in Human Behavior, 91, 52–61. https://doi.org/10.1016/j.chb.2018.09.024 [Crossref], [Web of Science ®], [Google Scholar]
- Rieder, A., & Rhyn, M. (2020). Situational self-efficacy and behavioral responses to wearable use. In Proceedings of the 28th European conference on information systems. AIS Virtual Conference Series due to Covid-19. [Google Scholar]
- Ronen, H., & Te’eni, D. (2013). The impact of HCI design on health behavior: The case for Visual, Interactive, Personalized-content (VIP) feedback. In Proceedings of ICIS 2013, Milan, Italy. [Google Scholar]
- Sallis, J. F., Pinski, R. B., Grossmann, R. M., Patterson, T. L., & Nader, P. R. (1988). The development of self-efficacy scales for health-related diet and exercise behaviors. Health Education Research, 3(3), 283–292. https://doi.org/10.1093/her/3.3.283 [Crossref], [Google Scholar]
- Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam, B., Burroughs, H., & Jinks, C. (2018). Saturation in qualitative research: Exploring its conceptualization and operationalization. Quality & Quantity, 52(4), 1893–1907. https://doi.org/10.1007/s11135-017-0574-8 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
- Scharfstein, B.-A. (1989). The dilemma of context. New York University Press. [Google Scholar]
- Scholz, U., Sniehotta, F. F., & Schwarzer, R. (2016). Predicting physical exercise in cardiac rehabilitation: The role of phase-specific self-efficacy beliefs. Journal of Sport & Exercise Psychology, 27(2), 135–151. https://doi.org/10.1123/jsep.27.2.135 [Crossref], [Google Scholar]
- Shih, P. C., Han, K., Poole, E. S., Rosson, M. B., & Carroll, J. M. (2015). Use and adoption challenges of wearable activity trackers. In Proceedings of iConference, Newport Beach. [Google Scholar]
- Spagnolli, A., Chittaro, L., & Gamberini, L. (2016). Interactive persuasive systems: A perspective on theory and evaluation. International Journal of Human-computer Interaction, 32(3), 177–189. https://doi.org/10.1080/10447318.2016.1142798 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Stajkovic, A. D., & Luthans, F. (1998). Self-efficacy and work-related performance: A meta-analysis. Psychological Bulletin, 124(2), 240–261. https://doi.org/10.1037/0033-2909.124.2.240 [Crossref], [Web of Science ®], [Google Scholar]
- Stajkovic, A. D., & Sommer, S. M. (2000). Self-efficacy and causal attributions: Direct and reciprocal links. Journal of Applied Social Psychology, 30(4), 707–737. https://doi.org/10.1111/j.1559-1816.2000.tb02820.x [Crossref], [Web of Science ®], [Google Scholar]
- Statista. (2019a). Wearables. Retrieved May 05, 2020, from https://de.statista.com/outlook/319/155/wearables/schweiz#market-users [Google Scholar]
- Statista. (2019b). Market share of wearables unit shipments worldwide by vendor from 2014 to 2017. Retrieved January 03, 2019, from https://www.statista.com/statistics/610447/wearable-device-revenue-worldwide/ [Google Scholar]
- Strecher, V. J., McEvoy DeVellis, B., Becker, M. H., & Rosenstock, I. M. (1986). The role of self-efficacy in achieving health behavior change. Health Education Quarterly, 13(1), 73–92. https://doi.org/10.1177/109019818601300108 [Crossref], [PubMed], [Google Scholar]
- van Aken, J. E., Berends, H., & van der Bij, H. (2007). Problem-solving in organizations: A methodological handbook for business students. Cambridge University Press. [Crossref], [Google Scholar]
- Wallendorf, M., & Belk, R. W. (1989). Assessing trustworthiness in naturalistic consumer research. In E. C. Hirschman (Ed.), SV – Interpretive consumer research (pp. 69–84). Association of Consumer Research. [Google Scholar]
- West, D. S., Monroe, C. M., Turner-McGrievy, G., Sundstorm, B., Larsen, C., Magradey, K., Wilcox, S., & Brandt, H. M. (2016). A technology-mediated behavioral weight gain prevention intervention for college students: Controlled, Quasi-experimental study. Journal of Medical Internet Research, 18(9), 1–13. https://doi.org/10.2196/jmir.5474 [Google Scholar]
- Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human-computer Studies, 59(4), 431–449. https://doi.org/10.1016/S1071-5819(03)00114-9 [Crossref], [Web of Science ®], [Google Scholar]
- Yilmaz, R. (2016). Knowledge sharing behaviors in e-learning community: Exploring the role of academic self-efficacy and sense of community. Computers in Human Behavior, 63, 373–382. https://doi.org/10.1016/j.chb.2016.05.055 [Google Scholar]